×
10.08.2015
216.013.6c52

СПОСОБ АККУМУЛЯЦИИ ЭНЕРГИИ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002559288
Дата охранного документа
10.08.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области энергетики, а именно к технологии получения заряженных частиц больших энергий, и предназначено для применения в области ядерной физики и технологии. Технический результат - повышение плотности энергии потока заряженных частиц. Способ осуществляется путем выполнения во времени последовательности процессов: генерации потока заряженных частиц, ускорения, фокусировки, замедления и дефокусировки, причем процессы в указанном порядке осуществляются периодически с частотой изменения величины магнитного поля, а вывод потока частиц на мишень происходит за счет изменения индукции магнитного поля на стационарной траектории в сторону увеличения или уменьшения. Все перечисленные процессы осуществляются под действием одного и того же переменного аксиально-симметричного магнитного поля бетатронного типа, параметры которого позволяют проводить процессы в согласованном режиме и определяются следующим образом: индукция магнитного поля в области стационарной траектории уменьшается пропорционально расстоянию ρ от оси симметрии по закону В ~ ρ, где α=0,5, индукция магнитного поля В на стационарной траектории, окружности радиуса ρ, составляет половину среднего значения магнитного поля B внутри этой окружности B=0,5·B; частота изменения В, в зависимости от вида ускоряемых частиц - электронов или ионов, составляет ν=10-10; изменение B во времени подчинено условию периодичности B(t+2T)=B(t), B(t+T)=-B(t), где T=ν - полупериод изменения величины индукции магнитного поля. 3 ил.
Основные результаты: Способ аккумуляции энергии потока заряженных частиц, состоящий из процессов их генерации и ускорения, под действием переменного аксиально симметричного магнитного поля бетатронного типа, индукция которого в области стационарной траектории В уменьшается, относительно оси, по закону В~ρ, где показатель степени α=0,6, при этом индукция магнитного поля B на стационарной траектории, окружности радиуса ρ, составляет половину среднего значения B внутри этой окружности B=0,5·B, отличающийся тем, что представляет периодическую последовательность процессов генерации заряженных частиц, ускорения и прецизионной фокусировки, замедления и дефокусировки, которую осуществляют одним и тем же переменным аксиально-симметричным магнитным полем бетатронного типа, с частотой изменения магнитного поля ν, где ν=10-10 Гц, с показателем степени α=0,5 в выражении для индукции магнитного поля В, изменяющейся по периодическому закону B(t+2T)=B(t), B(t+T)=-B(t), где Т=ν, а вывод энергии потока заряженных частиц на мишень осуществляют изменением индукции магнитного поля В на стационарной траектории.
Реферат Свернуть Развернуть

Изобретение относится к области энергетики, а именно к технологии получения заряженных частиц больших энергий, и предназначено для применения в области ядерной физики и технологии.

В качестве аналога заявляемого способа использована технология прецизионной фокусировки электронов (бета-частиц) в электронном магнитном спектрометре [Патент РФ №2338295. Электронный магнитный спектрометр, 2008 г.]. В способе-аналоге генерируемые источником электроны движутся в условиях вакуума в постоянном аксиально-симметричном магнитном поле, индукция которого спадает пропорционально расстоянию ρ от аксиальной оси по закону В ~ ρ, где α=0,5. Магнитное поле указанной конфигурации удерживает электроны вблизи стационарной траектории - окружности радиуса ρ0 и осуществляет их прецизионную фокусировку на мишени, расположенной под аксиальным углом к источнику. Основным недостатком указанной технологии является непрерывность процесса движения и фокусировки электронов, что не позволяет использовать ее для аккумуляции энергии потока.

В качестве прототипа взята технология ускорения электронов (бета-частиц) в бетатроне [БСЭ, т.27, третье издание, М.: Изд. «Советская энциклопедия», 1977, с.110], которая заключается в следующем. Электроны, генерируемые электронной пушкой, движутся в условиях вакуума в переменном аксиально-симметричном магнитном поле бетатронного типа, которое характеризуется следующими параметрами.

Индукция магнитного поля спадает пропорционально расстоянию ρ от аксиальной оси по закону В ~ ρ, где α=0,6, при этом значение индукции магнитного поля В0 на стационарной траектории - окружности радиуса ρ0, составляет половину среднего значения индукции магнитного поля Вср внутри этой окружности В0=0,5·Вср. Частота изменения индукции магнитного поля составляет 10-103 Гц.

В условиях действия магнитного поля с указанными параметрами электроны движутся вблизи стационарной траектории, многократно пересекая ее. Одновременно происходит ускорение электронов под действием возникающего индукционного электрического поля. Процесс носит периодический характер и осуществляется во временные интервалы, соответствующие возрастанию магнитного поля в фиксированном направлении. В процессе ускорения электроны совершают порядка 105-106 оборотов и после достижения необходимой энергии 1-150 МэВ выводятся из области стационарной траектории на мишень. Вывод электронов на мишень осуществляется созданием в конце периода ускорения дополнительного импульсного поля, нарушающего бетатронное условие.

Укажем следующие недостатки прототипа.

1. Технология ускорения электронов в бетатроне не позволяет аккумулировать энергию за счет накопления электронов в течение нескольких периодов процесса из-за однонаправленного характера движения электронов вдоль стационарной траектории-окружности.

2. Наличие электронной пушки бетатрона подразумевает использование различных видов полей для получения и ускорения электронов, что приводит к сложности согласования обоих процессов.

3. Технология вывода электронов из области ускорения посредством создания дополнительного магнитного поля затрудняет его согласование с магнитным полем бетатрона.

4. Применяемая технология получения электронов в электронной пушке бетатрона не позволяет достичь высоких значений силы тока электронов вследствие малой площади эмитируемой поверхности в электронной пушке.

5. Технология, реализуемая в прототипе, не позволяет осуществить прецизионную фокусировку электронов на мишени из-за большого количества оборотов, совершаемых электронами во время ускорения. Радиус фокусного пятна оказывается равным амплитуде колебаний электронов относительно стационарной траектории, следствием чего является невозможность получения большой поверхностной плотности мощности на мишени.

6. Эффективное использование процесса ускорения электронов составляет только 25%, поскольку ускорение частиц в бетатроне осуществляется только на протяжении 1/4 периода изменения магнитного поля.

7. Используемая технология вывода потока ускоренных частиц из области ускорения делает невозможным их прецизионную фокусировку на мишени, как это имеет место в магнитных спектрометрах.

Задачей предлагаемого способа является получение большой плотности энергии потока заряженных частиц на мишени, что достигается увеличением количества электронов в потоке и их прецизионной фокусировкой.

Указанная задача решается за счет периодически повторяющейся во времени последовательности процессов: генерации потока заряженных частиц, ускорения, фокусировки замедления и дефокусировки, с частотой изменения величины магнитного поля 105-108 Гц, а вывод энергии потока происходит путем изменения величины индуктивности магнитного поля на стационарной траектории в сторону увеличения или уменьшения, при соблюдении аксиальной симметрии магнитного поля.

Все перечисленные процессы осуществляются под действием одного и того же переменного аксиально-симметричного магнитного поля бетатронного типа, что позволяет проводить их в согласованном режиме, при выполнении следующих условий, а именно:

- индукция магнитного поля в области стационарной траектории уменьшается пропорционально расстоянию ρ от оси симметрии по закону В ~ ρ, где α ~ 0,5 для выполнения условия прецизионной фокусировки;

- индукция магнитного поля В0 на стационарной траектории, окружности радиуса ρ0, составляет половину среднего значения магнитного поля В внутри этой окружности В0=0,5·Вср;

- частота изменения индукции магнитного поля, в зависимости от вида ускоряемых частиц - электронов или ионов, составляет ν=105-108 Гц, причем для электронов ν=107-108 Гц, а ионов ν=105-106 Гц. В этом случае область движения заряженных частиц будет ограничена аксиальным углом, меньшим 2π, и, следовательно, траектории заряженных частиц не будут пересекать источник;

- изменение индукции магнитного поля во времени подчинено следующему условию периодичности

B(t+2T)=B(t), B(t+T)=-B(t)

где Т=ν-1 - полупериод изменения индукции магнитного поля;

- источник заряженных частиц представляет собой систему соосно-расположенных заземленных цилиндров, торцы которых имеют радиус закругления кромок ~ 10-6 м и выполняют функции электродов-эмиттеров и позволяют увеличить линейную протяженность поверхности источника без существенного снижения плотности напряженности индукционного поля;

- генерируемыми частицами могут быть как электроны, так и ионы металлов в случае использования жидкометаллического ионного источника.

Положительный технический результат, обеспечиваемый указанной совокупностью признаков, состоит в повышении плотности мощности потока заряженных частиц на мишени, которая обусловлена:

- циклическим характером движения потока электронов;

- генерированием и накоплением электронов в потоке от цикла к циклу;

- удержанием потока;

- отсутствием пересечения потоком источника;

- торможением потока силами радиационного трения, и которая достигается:

- прецизионной фокусировкой потока электронов на мишени.

Способ аккумуляции энергии потока заряженных частиц поясняется схемой фиг. 1, которая состоит из вакуумной камеры (не указана) с расположенным в ней источником А в виде системы соосных цилиндров (электродов эмиттеров), точки фокусировки потока F и смещенной мишени F1. Плоскости С и А1 ограничивают движение заряженных частиц вдоль стационарной траектории окружности радиуса ρ0.

На фиг. 2 показано изменение индукции магнитного поля В во времени.

На фиг. 3 показаны технологические процессы и их порядок выполнения: 1 - генерация заряженных частиц, 2 - ускорение, 3 - замедление, 4 - фокусировка, 5 - дефокусировка, 6 - радиационное трение, 7 - вывод аккумулированной энергии потока заряженных частиц.

Рассмотрим порядок выполнения технологических процессов в способе аккумуляции энергии потока заряженных частиц (фиг. 3).

1. При возрастании во времени переменного магнитного поля в положительном направлении (фиг. 1), (фиг. 2) вдоль стационарной траектории D - окружности радиуса ρ0, возникает индукционное электрическое поле, величина которого при указанной выше частоте изменения магнитного поля оказывается достаточной для возникновения эффекта автоэмиссии заряженных частиц с кромок электродов-эмиттеров источника А.

2. Генерируемые заряженные частицы в условиях действия индукционного электрического поля движутся ускоренно и под действием магнитного поля фокусируются в точке F.

3. При прохождении точки фокусировки F магнитное поле изменяет направление и становится отрицательным (фиг. 2), в соответствии с этим индукционное электрическое поле изменяет знак ускорения и далее частицы движутся замедленно к плоскости С.

4. При достижении плоскости С магнитное поле обращается в ноль и вновь начинает возрастать в отрицательном направлении. Частицы останавливаются и под действием возникающего индукционного поля вновь начинают ускоряться, двигаясь в противоположном направлении, после чего процессы ускорения, фокусировки и замедления, дефокусировки повторяются в обратном направлении. При этом вследствие действия сил радиационного трения частицы изменяют движение на противоположное в плоскости А1, не достигая источника А.

5. По достижении частицами плоскости A1 весь цикл процессов повторяется вновь.

6. После осуществления количества циклов, обеспечивающего требуемую плотность потока, необходимо увеличить или уменьшить среднее значение индукции магнитного поля внутри окружности стационарной траектории. Вследствие этого происходит сдвиг потока частиц относительно исходной стационарной траектории радиуса ρ0 и их прецизионная фокусировка в точке F1, соответствующий новому радиусу равновесной траектории ρ1.

На фиг. 1 показан вариант фокусировки, при котором среднее поле уменьшается Bcp1<Bcp и радиус равновесной траектории увеличивается ρ10.

Заявителю не известен способ аккумуляции энергии потока заряженных частиц подобного изложенному, вследствие этого предлагаемый способ соответствует критерию «новизна».

Способ аккумуляции энергии потока заряженных частиц, состоящий из процессов их генерации и ускорения, под действием переменного аксиально симметричного магнитного поля бетатронного типа, индукция которого в области стационарной траектории В уменьшается, относительно оси, по закону В~ρ, где показатель степени α=0,6, при этом индукция магнитного поля B на стационарной траектории, окружности радиуса ρ, составляет половину среднего значения B внутри этой окружности B=0,5·B, отличающийся тем, что представляет периодическую последовательность процессов генерации заряженных частиц, ускорения и прецизионной фокусировки, замедления и дефокусировки, которую осуществляют одним и тем же переменным аксиально-симметричным магнитным полем бетатронного типа, с частотой изменения магнитного поля ν, где ν=10-10 Гц, с показателем степени α=0,5 в выражении для индукции магнитного поля В, изменяющейся по периодическому закону B(t+2T)=B(t), B(t+T)=-B(t), где Т=ν, а вывод энергии потока заряженных частиц на мишень осуществляют изменением индукции магнитного поля В на стационарной траектории.
СПОСОБ АККУМУЛЯЦИИ ЭНЕРГИИ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ
СПОСОБ АККУМУЛЯЦИИ ЭНЕРГИИ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ
СПОСОБ АККУМУЛЯЦИИ ЭНЕРГИИ ПОТОКА ЗАРЯЖЕННЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 14.
20.05.2013
№216.012.4207

Способ повышения чувствительности обнаружения паров токсичных химикатов детектором на основе полупроводниковых датчиков

Изобретение относится к области анализа паров токсичных химикатов, а именно к области обеспечения безопасности персонала химически опасных объектов, личного состава Министерства Обороны, МЧС, МВД, действующего в зоне химического заражения, а также передовых и аварийно-спасательных отрядов при...
Тип: Изобретение
Номер охранного документа: 0002482473
Дата охранного документа: 20.05.2013
20.10.2013
№216.012.7737

Устройство создания мощных ионных потоков

Изобретение относится к области плазменной техники. Технический результат - повышение мощности автоэмиссионного источника ионов за счет одновременного повышения силы тока и энергии ионов в пучке. Устройство создания мощных ионных потоков состоит из вакуумной камеры с источником ионов и двух...
Тип: Изобретение
Номер охранного документа: 0002496179
Дата охранного документа: 20.10.2013
27.12.2013
№216.012.919a

Способ формирования базы спектральных данных для фурье-спектрорадиометров

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. Способ заключается в беспробоотборном определении мгновенных значений концентрации...
Тип: Изобретение
Номер охранного документа: 0002502967
Дата охранного документа: 27.12.2013
10.06.2014
№216.012.d150

Имплантат для закрытия перфорационного отверстия гайморовой пазухи

Изобретение относится к медицине. Имплантат для закрытия перфорационного отверстия гайморовой пазухи представляет собой наружный цилиндр, в котором расположен внутренний цилиндр. Наружный цилиндр выполнен из титана марки ВТ-5 и имеет ячеистую структуру с диаметром, соответствующим диаметру...
Тип: Изобретение
Номер охранного документа: 0002519355
Дата охранного документа: 10.06.2014
10.08.2014
№216.012.e7b3

Система поиска уязвимости критически важных объектов сложных социально-технических систем

Изобретение относится к вычислительным распределенным системам. Технический результат заключается в повышении точности и достоверности определения уязвимых элементов в составе распределенных систем. Система содержит, по меньшей мере, два автоматизированных рабочих места (АРМ) пользователей,...
Тип: Изобретение
Номер охранного документа: 0002525108
Дата охранного документа: 10.08.2014
27.10.2014
№216.013.019a

Ускоритель заряженных частиц

Изобретение относится к системам получения заряженных частиц больших энергий и предназначено для применения в области ядерной физики и ядерных технологий. Ускоритель заряженных частиц содержит вакуумную камеру в форме участка кольцевой трубы, на торцах которого внутри находятся источник...
Тип: Изобретение
Номер охранного документа: 0002531808
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.196a

Устройство расстыковки соединителя между ракетой и транспортно-пусковым контейнером

Изобретение относится к ракетной технике и может быть использовано для расстыковки соединителя между ракетой и транспортно-пусковым контейнером (ТПК). Устройство расстыковки соединителя между ракетой и ТПК содержит короб, быстроразъёмное электрическое соединение вилки с розеткой, пружины для...
Тип: Изобретение
Номер охранного документа: 0002537934
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2192

Механизм удержания ракеты в транспортно-пусковом контейнере

Изобретение относится к области ракетной техники и предназначено для применения в ракетах, запускаемых из транспортно-пускового контейнера. Конструкция узла механизма удержания представляет собой кронштейн, на котором смонтированы упор, флажок, тандер и зацеп, размещенный на оси вращения в...
Тип: Изобретение
Номер охранного документа: 0002540042
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.246c

Автоматизированная система оценки боевого потенциала воинского формирования

Изобретение относится к вычислительным системам и может быть использовано в автоматизированных системах оценки боевого потенциала воинского формирования. Технический результат - обеспечение повышения быстродействия и достоверности расчетов при оценке боевого потенциала воинского формирования....
Тип: Изобретение
Номер охранного документа: 0002540777
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2d98

Транспортно-пусковой контейнер

Изобретение относится к области ракетной техники, в частности к транспортно-пусковым контейнерам. Транспортно-пусковой контейнер для ракеты содержит корпус и механизм для закрепления ракеты в нем. Механизм закрепления содержит попарно размещенные силовые шпангоуты с попарно размещенными на них...
Тип: Изобретение
Номер охранного документа: 0002543140
Дата охранного документа: 27.02.2015
Показаны записи 1-10 из 17.
20.10.2013
№216.012.7737

Устройство создания мощных ионных потоков

Изобретение относится к области плазменной техники. Технический результат - повышение мощности автоэмиссионного источника ионов за счет одновременного повышения силы тока и энергии ионов в пучке. Устройство создания мощных ионных потоков состоит из вакуумной камеры с источником ионов и двух...
Тип: Изобретение
Номер охранного документа: 0002496179
Дата охранного документа: 20.10.2013
10.06.2014
№216.012.d150

Имплантат для закрытия перфорационного отверстия гайморовой пазухи

Изобретение относится к медицине. Имплантат для закрытия перфорационного отверстия гайморовой пазухи представляет собой наружный цилиндр, в котором расположен внутренний цилиндр. Наружный цилиндр выполнен из титана марки ВТ-5 и имеет ячеистую структуру с диаметром, соответствующим диаметру...
Тип: Изобретение
Номер охранного документа: 0002519355
Дата охранного документа: 10.06.2014
10.08.2014
№216.012.e7b3

Система поиска уязвимости критически важных объектов сложных социально-технических систем

Изобретение относится к вычислительным распределенным системам. Технический результат заключается в повышении точности и достоверности определения уязвимых элементов в составе распределенных систем. Система содержит, по меньшей мере, два автоматизированных рабочих места (АРМ) пользователей,...
Тип: Изобретение
Номер охранного документа: 0002525108
Дата охранного документа: 10.08.2014
27.10.2014
№216.013.019a

Ускоритель заряженных частиц

Изобретение относится к системам получения заряженных частиц больших энергий и предназначено для применения в области ядерной физики и ядерных технологий. Ускоритель заряженных частиц содержит вакуумную камеру в форме участка кольцевой трубы, на торцах которого внутри находятся источник...
Тип: Изобретение
Номер охранного документа: 0002531808
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.196a

Устройство расстыковки соединителя между ракетой и транспортно-пусковым контейнером

Изобретение относится к ракетной технике и может быть использовано для расстыковки соединителя между ракетой и транспортно-пусковым контейнером (ТПК). Устройство расстыковки соединителя между ракетой и ТПК содержит короб, быстроразъёмное электрическое соединение вилки с розеткой, пружины для...
Тип: Изобретение
Номер охранного документа: 0002537934
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2192

Механизм удержания ракеты в транспортно-пусковом контейнере

Изобретение относится к области ракетной техники и предназначено для применения в ракетах, запускаемых из транспортно-пускового контейнера. Конструкция узла механизма удержания представляет собой кронштейн, на котором смонтированы упор, флажок, тандер и зацеп, размещенный на оси вращения в...
Тип: Изобретение
Номер охранного документа: 0002540042
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.246c

Автоматизированная система оценки боевого потенциала воинского формирования

Изобретение относится к вычислительным системам и может быть использовано в автоматизированных системах оценки боевого потенциала воинского формирования. Технический результат - обеспечение повышения быстродействия и достоверности расчетов при оценке боевого потенциала воинского формирования....
Тип: Изобретение
Номер охранного документа: 0002540777
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2d98

Транспортно-пусковой контейнер

Изобретение относится к области ракетной техники, в частности к транспортно-пусковым контейнерам. Транспортно-пусковой контейнер для ракеты содержит корпус и механизм для закрепления ракеты в нем. Механизм закрепления содержит попарно размещенные силовые шпангоуты с попарно размещенными на них...
Тип: Изобретение
Номер охранного документа: 0002543140
Дата охранного документа: 27.02.2015
27.05.2015
№216.013.4ea5

Высокочастотный электронно-ионный микроскоп

Изобретение относится к системам электронно-ионной оптики и предназначено для изучения структуры вещества путем просвечивания его мощным потоком заряженных частиц. Высокочастотный электронно-ионный микроскоп состоит из вакуумной камеры и находящихся в ней источника заряженных частиц,...
Тип: Изобретение
Номер охранного документа: 0002551651
Дата охранного документа: 27.05.2015
20.03.2016
№216.014.c904

Способ дистанционного контроля размеров тонкодисперсных аэрозолей стойких токсичных химикатов при возникновении запроектных аварий на химически опасных объектах

Изобретение относится к области оптических методов измерения физико-химических характеристик аэрозольных сред и может быть использовано при разработке лидарных комплексов для дистанционного контроля дисперсного состава аэрозольных облаков стойких токсичных химикатов (ТХ) при возникновении...
Тип: Изобретение
Номер охранного документа: 0002578105
Дата охранного документа: 20.03.2016
+ добавить свой РИД