×
10.08.2015
216.013.6b9c

Результат интеллектуальной деятельности: ТУРБОКОМПРЕССОР (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к объектам энергетического машиностроения. В турбокомпрессоре с крыльчаткой закрытого типа 2 и активном магнитном подвесе на основе радиально-упорных электромагнитных подшипников 4 кольцевой электромагнит 6 одного из подшипников встроен в корпус компрессора 1 со стороны крышки 7 крыльчатки 2, а крышка 7 выполнена из электротехнической стали или аморфного железа. Изобретение направлено на уменьшение продольных габаритов турбокомпрессоров с активным магнитным подвесом и повышение их экономичности. 3 н.п. ф-лы, 3 ил.

Изобретение относится к области энергетического машиностроения, в частности к конструкциям компрессорных и турбокомпрессорных установок с центробежными компрессорами и роторами на активных электромагнитных опорах, и может быть применено в космических энергетических установках, использующих газообразное рабочее тело в замкнутом термодинамическом цикле Брайтона, где для замыкания цикла необходим высокий коэффициент полезного действия турбокомпрессора и, следовательно, минимизация потерь на трение элементов ротора с рабочим телом турбокомпрессора.

Известна турбокомпрессорная установка, в которой для фиксации положения ротора при его вращении используются радиальный и осевой электромагнитные подшипники (опоры) с аппаратурой управления, использующей в качестве отрицательной обратной связи сигналы датчиков перемещения ротора, реагирующих на изменение магнитного поля в зазорах между электромагнитами статора и ферромагнитными элементами ротора, в число которых входит диск упорного (осевого) подшипника (Патент РФ №2115835, 1998 г., патент РФ №2251033, 2003 г.).

К недостаткам такой турбокомпрессорной установки можно отнести увеличенные за счет введения осевого (упорного) подшипника габариты и относительно большие потери полезной мощности, связанные с трением между диском упорного подшипника и рабочим телом турбокомпрессора, особенно в случае применения турбокомпрессора в составе энергоустановки, работающей по замкнутому циклу с высоким давлением рабочего тела (40…70 кгс/см2) в контуре и, соответственно, в зазорах осевого электромагнитного подшипника - между кольцевыми электромагнитами и ферромагнитным диском, установленным на валу ротора. Повышение давления в замкнутом контуре целесообразно, так как при этом уменьшаются потери давления в магистралях на входе и выходе турбины турбокомпрессора, что обеспечивает повышение коэффициента полезного действия энергоустановки; с другой стороны, с увеличением давления увеличивается плотность рабочего тела и, следовательно, потери мощности на дисковое трение, главным образом - в осевом электромагнитном подшипнике, так как с увеличением давления при заданной степени сжатия в компрессоре необходимо увеличение опорной площади ферромагнитного диска осевого подшипника из-за увеличения осевой силы, действующей на ротор турбокомпрессора, а увеличение площади приводит к увеличению потерь на трение. Так, в турбокомпрессоре энергоустановки, работающей по замкнутому циклу с полезной мощностью ≈100 КВт, использующей аргон в качестве рабочего тела при степени сжатия в компрессоре ≈2,6, давлении в полости осевой электромагнитной опоры - 60 кгс/см2 и соответствующей давлению плотности аргона 57 кгс/см2, при угловой скорости вращения ротора турбокомпрессора - 6280 рад/с, осевая сила, действующая на ротор, при оптимальной реактивности турбины достигает величины 300 кгс, что при удельной нагрузке на ферромагнитный диск осевой электромагнитной опоры ≈5 кгс/см2 определяет необходимую величину эффективной площади ферромагнитного диска (с коэффициентом запаса ≈1,5), равную 90 см2, и диаметр диска (при диаметре вала турбокомпрессора - 3,5 см) ≈12,6 см. Потери на дисковое трение при указанных выше параметрах равны 14 КВт (14% от полезной мощности энергоустановки), соответственно, на эту же величину из-за дискового трения в осевой опоре уменьшается коэффициент полезного действия энергоустановки.

Известен взятый за прототип активный магнитный подвес (АМП) ротора на основе радиально-упорных электромагнитных подшипников, в котором исключен опорный диск осевого подшипника, но имеют место ферромагнитные конусы 2-х радиально-осевых подшипников, установленные на валу ротора (см. Журавлев Ю.Н. «Активные магнитные подшипники. Теория, расчет, применение». Изд. Политехника, Санкт-Петербург, 2003 г., стр.22, рис. 2.4). Такой подвес уменьшает продольные габариты турбокомпрессора и исключает потери на трение диска осевого подшипника. Вместе с тем, при этом имеют место увеличенные потери на трение в конусных опорах, так как вектор силы F, характеризующей несущую способность опоры, в этом случае разделяется на осевую Fe и радиальную Fr составляющие, которые равны:

Fe=F×sinα; Fr=F×cosα, где α - угол конусности опоры.

Соответственно, необходимая для восприятия осевого усилия площадь радиально-осевой конусной опоры увеличивается в раз, что приводит к соответствующему увеличению потерь на трение по сравнению с потерями на дисковое трение осевом (упорном) электромагнитном подшипнике.

Изобретение направлено на уменьшение продольных габаритов турбокомпрессора и повышение его экономичности путем исключения одного из автономных электромагнитных подшипников с соответствующим уменьшением осевых габаритов и потерь мощности турбокомпрессора на трение при вращении его ротора. Технический результат обеспечивается следующими исполнениями турбокомпрессора:

1. В турбокомпрессоре, включающем центробежный компрессор с крыльчаткой закрытого типа, турбину, активный магнитный подвес ротора на основе радиально-упорных электромагнитных подшипников, многополюсный кольцевой электромагнит одного из подшипников встроен в корпус компрессора со стороны крышки крыльчатки, а крышка выполнена из электротехнической стали или аморфного железа.

2. В турбокомпрессоре, включающем центробежный компрессор с крыльчаткой закрытого типа с диском, турбину, активный магнитный подвес ротора на основе осевого и радиальных электромагнитных подшипников, кольцевые электромагниты осевого подшипника встроены в корпус компрессора как со стороны крышки, так и со стороны диска крыльчатки, а диск и крышка выполнены из электротехнической стали или аморфного железа.

3. В турбокомпрессоре, включающем центробежный компрессор с крыльчаткой открытого типа с диском, турбину, активный магнитный подвес ротора на основе одностороннего осевого и радиальных электромагнитных подшипников, кольцевой электромагнит одностороннего осевого подшипника встроен в корпус компрессора со стороны диска крыльчатки, диск выполнен из электротехнической стали или аморфного железа, а турбина выполнена со степенью реактивности, обеспечивающей однонаправленность осевой силы от турбины к компрессору на всех режимах работы турбокомпрессора.

При упомянутых конструкциях турбокомпрессоров с роторами на активном магнитном подвесе, использующих детали компрессоров (крышки, диски), выполненные из технологически пригодных для изготовления этих деталей ферромагнитных материалов, каковыми являются электротехническая сталь или аморфное железо, уменьшаются продольные габариты турбокомпрессоров, а также уменьшаются потери мощности турбокомпрессора на трение вследствие исключения конструктивно автономного, радиально-упорного (или осевого) электромагнитного подшипника за счет совмещения элементов его конструкции с элементами конструкции компрессора; при этом, как показали проработки конструкции турбокомпрессора мощностью 100 КВт, возможно уменьшение длины ротора на ≈20%, а приведенная выше расчетная оценка свидетельствует о возможности повышения коэффициента полезного действия турбокомпрессора на величину до ≈14%.

На чертежах представлены варианты конструктивных схем турбокомпрессоров с роторами на активном магнитном подвесе, использующем элементы конструкции компрессора в качестве элементов конструкции электромагнитного подшипника:

- в качестве радиально-упорного электромагнитного подшипника (фиг.1),

- в качестве 2-стороннего упорного электромагнитного подшипника (фиг.2),

- в качестве одностороннего упорного подшипника (фиг.3).

В состав турбокомпрессора, представленного на фиг.1, входят: центробежный компрессор 1 с корпусом и крыльчаткой закрытого типа 2, турбина 3, односторонний радиально-упорный подшипник 4 - в качестве ближней к турбине опоры вала 5. В корпус компрессора 1 встроены многополюсный кольцевой электромагнит 6 с магнитоводами, полюсами, обращенными к выполненной из высокопрочного ферромагнитного материала крышке 7 крыльчатки 2, датчики перемещения, например, индукционного типа 8. Кольцевой электромагнит 6 (статор) с ферромагнитной крышкой 7 (ротор) образует односторонний радиально-упорный подшипник - вторую опору вала 5 турбокомпрессора.

В состав турбокомпрессора, представленного на фиг.2, входят: центробежный компрессор 1 с корпусом и крыльчаткой закрытого типа 2 с диском 10, турбиной 3, два радиальных электромагнитных подшипника 4 (опоры вала 5). В корпус компрессора встроены кольцевой электромагнит 6, обращенный полюсами магнитовода к крышке 7, выполненной из высокопрочного ферромагнитного материала, кольцевой электромагнит 9, обращенный полюсами магнитовода к диску 10 крыльчатки 2, выполненному из высокопрочного ферромагнитного материала. В кольцевой электромагнит 6 встроены также датчики перемещения 8.

В состав турбокомпрессора, представленного на фиг.3, входят: компрессор 1 с корпусом и крыльчаткой открытого типа 2 с диском 10, турбина 3 с заданной реактивностью, например, не более 0,2, два радиальных электромагнитных подшипника 4 в качестве опор вала 5 ротора турбокомпрессора. В корпус компрессора 1 со стороны диска 10 крыльчатки 2, выполненного из высокопрочного ферромагнитного материала, встроены обращенный полюсами магнитовода к диску 10 электромагнит 9, образующий вместе с диском 10 односторонний осевой (упорный) электромагнитный подшипник, воспринимающий осевую нагрузку, действующую на ротор в направлении от турбины к компрессору, и датчики перемещения 8.

При работе турбокомпрессора конструктивно совмещенные с компрессором электромагнитные подшипники удерживают положение ротора так же, как и автономные электромагнитные подшипники, - путем подачи аппаратурой управления импульсов электрического напряжения на электромагниты статоров по сигналам датчиков перемещения при изменении заданного зазора между ним и ферромагнитным элементом ротора (диск, крышка крыльчатки компрессора).

При работе турбокомпрессора, которая описана применительно к варианту 1 (фиг.1), ротор турбокомпрессора находится во взвешенном состоянии с заданными зазорами между статорами и роторами радиально-упорного подшипника 4 и радиально-упорного подшипника, встроенного в компрессор 1. В случае смещения ротора и увеличения зазора в каком либо месте между ферромагнитной крышкой 7 крыльчатки 2 (ротор подшипника) и полюсами магнитовода кольцевого электромагнита, датчики перемещения 8 вырабатывают сигналы в систему управления, которая по этим сигналам формирует команду на подачу электрического напряжения на обмотку соответствующего магнитовода кольцевого электромагнита 6, после чего указанный магнитовод притягивает ротор радиально-упорного подшипника, возвращая ротор в заданное положение.

Электромагнитные опоры вариантов 2, 3 работают аналогичным образом.


ТУРБОКОМПРЕССОР (ВАРИАНТЫ)
ТУРБОКОМПРЕССОР (ВАРИАНТЫ)
ТУРБОКОМПРЕССОР (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 121-124 из 124.
19.06.2019
№219.017.8532

Переносной герметичный контейнер

Переносной герметичный контейнер для хранения и транспортировки веществ при ограниченной подвижности оператора, содержащий выполненные из газонепроницаемого материала и соединенные герметично между собой по периметру верхнюю и нижнюю части, а также ручку для переноски контейнера. При этом он...
Тип: Изобретение
Номер охранного документа: 0002259311
Дата охранного документа: 27.08.2005
19.06.2019
№219.017.89d8

Устройство для сварки трением с перемешиванием полых трубчатых изделий

Изобретение может быть использовано для сварки трением с перемешиванием полых изделий. Сварочная головка выполнена с возможностью ее установки с наружной стороны свариваемого изделия и снабжена роликами для поджима свариваемых кромок. На лучах планшайбы, предназначенной для установки внутри...
Тип: Изобретение
Номер охранного документа: 0002457930
Дата охранного документа: 10.08.2012
10.07.2019
№219.017.b07a

Сопловой аппарат активной турбины

Сопловой аппарат активной турбины содержит сопло, имеющее разгонный участок и выходной участок, в котором выходное сечение сопла на плоскости косого среза имеет средний радиус изгиба, равный среднему радиусу рабочей решетки колеса турбины. В сопле разгонный участок выполнен из осесимметричного...
Тип: Изобретение
Номер охранного документа: 0002433280
Дата охранного документа: 10.11.2011
02.09.2019
№219.017.c668

Способ получения восстановительного газа

Изобретение относится к ракетной технике. Способ получения восстановительного газа, основанный на газификации жидких окислителя и избыточного количества горючего путем их химического взаимодействия в нескольких зонах, в соответствии с изобретением полный расход окислителя предварительно...
Тип: Изобретение
Номер охранного документа: 0002698781
Дата охранного документа: 29.08.2019
Показаны записи 121-130 из 130.
10.07.2019
№219.017.ad90

Гидромотор планетарного типа

Изобретение относится к роторным гидромашинам объемного вытеснения и может быть использовано в общем машиностроении. Гидромотор содержит направляющую 1, в гнездах которой установлены вставные зубья 2 с внутренними стержнями, выполненными из двух частей 8, установленных внутри втулки 7 зуба с...
Тип: Изобретение
Номер охранного документа: 0002378515
Дата охранного документа: 10.01.2010
10.07.2019
№219.017.b07a

Сопловой аппарат активной турбины

Сопловой аппарат активной турбины содержит сопло, имеющее разгонный участок и выходной участок, в котором выходное сечение сопла на плоскости косого среза имеет средний радиус изгиба, равный среднему радиусу рабочей решетки колеса турбины. В сопле разгонный участок выполнен из осесимметричного...
Тип: Изобретение
Номер охранного документа: 0002433280
Дата охранного документа: 10.11.2011
18.03.2020
№220.018.0cd6

Энергетическая установка с машинным преобразованием энергии

Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на повышение КПД турбокомпрессорных энергетических установок путем уменьшения затрат энергии турбины на привод компрессора. Эта задача решается снижением потребной степени сжатия компрессора только до...
Тип: Изобретение
Номер охранного документа: 0002716766
Дата охранного документа: 16.03.2020
18.07.2020
№220.018.33aa

Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива

Изобретение относится к ракетно-космической технике. Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива в составе космической двигательной установки, основанный на последовательной подаче 2-х команд с заданным интервалом времени между ними, при этом по...
Тип: Изобретение
Номер охранного документа: 0002726863
Дата охранного документа: 16.07.2020
06.06.2023
№223.018.7884

Жидкостный ракетный двигатель с электронасосной системой подачи

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель (ЖРД) с электронасосной системой подачи низкокипящих компонентов топлива, включающий регенеративно охлаждаемую камеру сгорания, электронасосные агрегаты для подачи компонентов топлива в камеру, блок питания электронасосных...
Тип: Изобретение
Номер охранного документа: 0002760956
Дата охранного документа: 01.12.2021
06.06.2023
№223.018.789d

Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере

Изобретение относится к ракетной технике и может быть использовано в конструкциях жидкостных ракетных двигателей, выполненных по схеме без дожигания в камере. Изобретение направлено на уменьшение потерь удельного импульса двигателя, связанных с приводом ТНА. Результат обеспечивается повышением...
Тип: Изобретение
Номер охранного документа: 0002765219
Дата охранного документа: 26.01.2022
06.06.2023
№223.018.78d3

Космическая энергетическая установка с машинным преобразованием энергии

Изобретение относится к объектам энергетического машиностроения. Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом, реализующим термодинамический цикл Брайтона, в состав которого входит источник тепла, компрессор,...
Тип: Изобретение
Номер охранного документа: 0002757148
Дата охранного документа: 11.10.2021
06.06.2023
№223.018.78d6

Жидкостный ракетный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в конструкции жидкостного ракетного двигателя с турбонасосной системой подачи топлива, выполненного по схеме без дожигания, с радиационно-охлаждаемым насадком сопла камеры. Жидкостный ракетный двигатель, выполненный...
Тип: Изобретение
Номер охранного документа: 0002757146
Дата охранного документа: 11.10.2021
06.06.2023
№223.018.78d9

Энергетическая установка с машинным преобразованием энергии

Энергоустановка содержит электрогенератор (ЭГ) (1), кинематически связанный с турбокомпрессором (ТК) (2) со стороны входа в компрессор, источник тепла (4), регенератор тепла (5), теплообменник-холодильник (6) системы отвода низкопотенциального тепла из рабочего контура жидким теплоносителем,...
Тип: Изобретение
Номер охранного документа: 0002757147
Дата охранного документа: 11.10.2021
06.06.2023
№223.018.78dd

Жидкостный ракетный двигатель

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель включает бустерные насосные агрегаты, турбонасосный агрегат, камеру и газогенератор, при этом в состав двигателя включена автономная аккумуляторная батарея, приводы бустерных насосов выполнены в виде синхронных...
Тип: Изобретение
Номер охранного документа: 0002757145
Дата охранного документа: 11.10.2021
+ добавить свой РИД