×
10.08.2015
216.013.6b82

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине. Частоту звуковых колебаний определяют по заданной формуле, затем с учетом полученного ее значения, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из заданного уравнения. Обеспечивается повышение доли мелкодисперсной фракции в пульверизате, образующемся при распылении расплава металла. 2 ил., 1 пр.
Основные результаты: Способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц): ,где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;ρ - плотность распыляющего газа в потоке, кг/м;σ - коэффициент поверхностного натяжения расплава металла, Н/м;а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения где f - частота звуковых колебаний, кГц;Е - модуль упругости материала пластины, Па;ν - коэффициент Пуассона материала пластины;ρ - плотность материала пластины, кг/м; - длина пластины, м;b - ширина пластины, м;h - толщина пластины, м.

Изобретение относится к области порошковой металлургии, в частности к способам получения порошков алюминия, магния и их сплавов распылением расплавленных металлов газовым потоком.

Известен способ распыления расплавленных металлов, включающий диспергирование расплава металла внешним потоком газа, концентричным струе расплава [1]. Известны способы распыления расплавов металлов, обеспечивающие повышение дисперсности получаемого порошка (пульверизата) дополнительным нагревом вспомогательного газа [2], снижением давления в камере распыления [3], дополнительным рассредоточенным вводом горячего газа в зону распыления [4] или в металлопровод [5], установкой рассекателей-дестабилизаторов в зоне распыления [6].

Наиболее близким по технической сущности является способ распыления жидких металлов диспергированием струи расплава окружающим ее концентрическим потоком газа с наложенными звуковыми колебаниями [7]. Звуковые колебания с несколькими дискретными частотами генерируют кольцевой резонансной полостью, расположенной в канале для подачи распыляющего газа. Недостатком данного способа является отсутствие взаимосвязи частот генерируемых звуковых колебаний с собственной частотой колебаний струи расплава при ее взаимодействии с распыляющим газом.

Техническим результатом изобретения является повышение массовой доли высокодисперсной фракции в пульверизате, образующемся при распылении расплава металла.

Технический результат достигается тем, что разработан способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц):

где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;

ρ - плотность распыляющего газа в потоке, кг/м3;

σ - коэффициент поверхностного натяжения расплава металла, Н/м;

а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения

где f - частота звуковых колебаний, кГц;

Е - модуль упругости материала пластины, Па;

ν - коэффициент Пуассона материала пластины;

ρр - плотность материала пластины, кг/м3;

а - длина пластины, м;

b - ширина пластины, м;

h - толщина пластины, м.

Полученный положительный эффект изобретения связан со следующими факторами.

1. При движении газа вдоль пластины, закрепленной с одного края, пластина начинает вибрировать с частотой, равной частоте ее собственных колебаний. Колебания пластины, в свою очередь, передаются обтекающему ее потоку газа, что приводит к нестационарности поля скоростей в газовом потоке. Если наложенная частота колебаний газового потока совпадает с наиболее неустойчивой частотой струи жидкости, то амплитуда малых возмущений на поверхности струи быстро нарастает (явление резонанса), что приводит к отрыву мелких капель с поверхности струи и, следовательно, улучшает условия распыла.

2. Явление распыления жидкости (разрушение ее поверхности с образованием большого числа мелких капель) связано с возрастанием амплитуды и появлением неустойчивости коротких волн на поверхности жидкости при динамическом воздействии газового потока. Анализ задачи о распаде струи жидкости высокоскоростным обдувающим потоком газа показал [8], что инкремент колебаний поверхности жидкости имеет максимум при значении волнового числа

где ug - относительная скорость газа и струи у поверхности жидкости;

λmax - длина волны наиболее неустойчивых колебаний.

Из уравнения (1) следует выражение для частоты колебаний наиболее неустойчивых коротких волн:

При частоте колебаний поверхности жидкости fmax достигается максимальное значение инкремента колебаний:

где ρж - плотность жидкости.

За время t, равное , амплитуда колебаний ζ поверхности жидкости увеличивается в е раз, поскольку ζ~ехр(α·t).

При движении газа относительно поверхности жидкости в газе образуется турбулентный пограничный слой. Амплитуда волн (шероховатостей) на поверхности жидкости ζ и скорость газа в ядре потока и (равная скорости газа на выходе из сопла форсунки) связаны со скоростью газа у поверхности жидкости соотношением

где δ - характерный размер струи жидкости. Амплитуда начальных возмущений на поверхности жидкости обычно не превосходит ζ=10-2δ [8], поэтому скорость газа у поверхности жидкости ug=0.217 u. Подставляя это значение в (1), получим значение частоты колебаний, оказывающих максимальное возмущающее воздействие на струю жидкости (расплава)

3. При движении газа вдоль пластины она начинает колебаться с собственной частотой, определяемой ее размерами и физическими свойствами материала [9]:

где - цилиндрическая жесткость пластины;

Gx, Gy, Нх, Ну,Jx, Jy - коэффициенты, зависящие от условий закрепления пластины и моды колебаний.

Для продольных колебаний защемленной с одного края пластины и первой моды выражение (5) упрощается (Gx=0.597, Нх=-0.087, Gyу=0, Jx=0.471, Jy=12/π2) и имеет следующий вид:

Для практических расчетов формула (6) может быть представлена в виде

Выбором материала пластины (Е, ρр, ν) и ее геометрических размеров (a, b, h) можно добиться, чтобы частотный диапазон собственных колебаний пластины располагался в области частот, близких к частоте максимального возмущающего воздействия на поверхность струи расплава (4), тем самым обеспечивая ее эффективное разрушение (диспергирование).

4. Поток распыляющего газа имеет кольцевую форму, поэтому для равномерного распределения наложенных на поток распыляющего газа звуковых колебаний количество пластин должно быть не менее двух, при этом пластины должны быть равномерно расположены по периметру кольцевой полости и направлены параллельно оси потока распыляющего газа. При большем количестве пластин эффективность их воздействия на газовый поток и, следовательно, на струю расплава повышается.

Сущность изобретения поясняется следующими чертежами.

Фиг. 1. Схема форсунки для распыления расплавов.

Фиг. 2. Схема размещения пластин в кольцевом канале форсунки.

Пример реализации способа

На фиг. 1 показан пример реализации заявленного способа получения металлических порошков распылением расплавов. Форсунка для распыления расплавов состоит из корпуса 1, крышки 2, ниппеля с центральным каналом для подачи расплава 3, защитного стального чехла 4, трубопровода 5 для подачи горячего сжатого газа и патрубка 6 для подачи расплава. В корпусе 1 выполнена кольцевая полость 7 для подачи сжатого газа в кольцевое сопло 8, образованное выходными конусами крышки 2 и ниппеля 3. В кольцевой полости 7 установлены пластины 9, равномерно расположенные по сечению кольцевой полости (фиг. 2) и жестко закрепленные со стороны входной части 10 кольцевой полости 7 (на фиг. 2 приведен вариант выполнения форсунки с шестью пластинами). На внешней поверхности защитного стального чехла 4 выполнен кольцевой прилив 11, высота которого не менее ширины щели кольцевого сопла 8, способствующий развитию колебаний пластин за счет отклонения газового потока.

Форсунка работает следующим образом. По трубопроводу 5 через входную часть 10 кольцевой полости 7 газ поступает в пространство между пластинами 9. При движении газа вдоль пластин и обтекании кольцевого прилива 11 пластины начинают вибрировать с собственной частотой, определяемой формулой (7). Колебания пластин, в свою очередь, передаются обтекающему их потоку распыляющего газа, что способствует более эффективному диспергированию расплава.

Проведем оценку эффективности заявленного способа на примере получения порошка алюминия по технологии ООО «СУАЛ-ПМ» [10]. Для получения пульверизата используется распыление расплава алюминия горячим газом - азотом. Распыление проводится эжекционной форсункой с массовым расходом расплава алюминия 0.04 кг/с через сопло диаметром 4 мм при температуре 900°C (σ=0.84 Н/м) и массовым расходом азота 0.2 кг/с при температуре 600°C и давлении 6 МПа. Подача распыляющего газа осуществляется через кольцевое сопло с шириной щели 0.8 мм. Форсунка имеет кольцевую газовую полость с внешним и внутренним диаметрами 42 мм и 26 мм и длиной 40 мм.

Для указанных условий распыления скорость газа на выходе из сопла форсунки u=550 м/с, скорость струи расплава um=1.3 м/с, плотность распыляющего газа в потоке ρ=0.4 кг/м3. Рассчитанное по формуле (4) значение частоты, обеспечивающей максимальное воздействие на процесс диспергирования, составляет f~87 кГц.

С учетом размеров кольцевой полости для подачи распыляющего газа (фиг. 2) выбираем размеры пластин: b=12 мм, а=25 мм. В качестве материала пластин можно использовать сталь марки 1Х18Н9Т (модуль упругости E=200 ГПа, плотность ρр=7800 кг/м3, коэффициент Пуассона ν=0.3) [11].

Подставляя в формулу (7) выбранные значения размеров пластины (а, b) и характеристики материала (E=200 ГПа, ρр=7800 кг/м3, ν=0.3), получим соотношение для определения толщины пластины h, обеспечивающей необходимое значение частоты собственных колебаний f=87 кГц. Расчетное значение h=1.92 мм.

Пластины с приведенными характеристиками создают наложенные звуковые колебания на поток распыляющего газа с частотой, обеспечивающей оптимальные условия распыления струи алюминия.

Таким образом, заявляемый способ получения металлических порошков распылением расплавов увеличивает динамическое воздействие распыляющего газового потока на струю расплава за счет резонансного усиления колебаний поверхности жидкости, что обеспечивает достижение заявленного положительного эффекта - повышение массовой доли высокодисперсной фракции в пульверизате, образующемся при распылении расплава металла.

Литература

1. Федорченко И.М., Андриевский Р. А. Основы порошковой металлургии. - Киев: Изд-во АН УССР, 1963. - 420 с.

2. Пат. РФ 2022715, МПК B22F 9/08. Способ получения высокодисперсного сферического алюминиевого порошка / В.Н. Буньков, В.А. Кондырев, Л.С. Голубцов, Н.Т. Филимонов, В.А. Ковалев. - №4936976/02; заявл. 16.05.1991; опубл. 15.11.1994.

3. Пат. РФ 2026157, МПК B22F 9/08. Способ получения алюминиевого порошка / В.Н. Буньков, В.А. Кондырев, Н.Т. Филимонов, В.А. Ковалев, Л.С. Голубцов. - №4841131/02; заявл. 19.06.1990; опубл. 09.01.1995.

4. Пат. РФ 2296648, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов. - №2005132356/02; заявл. 19.10.2005; опубл. 10.04.2007.

5. Пат. РФ 2283728, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, М.П. Кононов, А.В. Губанов, С.В. Линьков. - №2005105853; заявл. 02.03.2005; опубл. 20.09.2006.

6. Пат. РФ 2321475, МПК B22F 9/08. Форсунка для распыления расплавленных металлов / А.В. Кукса, А.В. Мольков, А.В. Губанов, С.В. Линьков. - №2006115192/02; заявл. 02.05.2006; опубл. 10.04.2008.

7. Patent US №4640806, МПК B22F 9/08. Process for atomizing liquid metals to produce finely granular powder / Thomas Duerig, Marcel Escudier, Jakob Keller, Killwangen. - заявл. 01.10.1985; опубл. 03.02.1987.

8. Левич В.Г. Физико-химическая гидродинамика. - М.: Физматгиз, 1950. - 699 с.

9. Гонткевич B.C. Собственные колебания пластинок и оболочек. - Киев: Наукова думка, 1964. - 278 с.

10. Технологическая инструкция по производству сферического дисперсного, высокодисперсного и с присадками титана и кремния пульверизатов распылением расплавленного алюминия в отделении №2 предприятия ООО «СУАЛ-ПМ». - ТИ 48-0106-36-1-10, г. Шелехов, 2010.

11. Справочник машиностроителя в 6-ти т. Т. 1-6. Под. ред. Ачеркана Н.С. - Л.: Машгиз, 1960. - 740 с.

Способ получения металлических порошков распылением расплавов, включающий диспергирование струи металлического расплава окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний, отличающийся тем, что звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине, при этом частоту звуковых колебаний f определяют по формуле (кГц): ,где u - относительная скорость потока распыляющего газа и струи расплава металла, м/с;ρ - плотность распыляющего газа в потоке, кг/м;σ - коэффициент поверхностного натяжения расплава металла, Н/м;а с учетом полученного значения частоты звуковых колебаний f, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из уравнения где f - частота звуковых колебаний, кГц;Е - модуль упругости материала пластины, Па;ν - коэффициент Пуассона материала пластины;ρ - плотность материала пластины, кг/м; - длина пластины, м;b - ширина пластины, м;h - толщина пластины, м.
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ РАСПЫЛЕНИЕМ РАСПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 90.
26.08.2017
№217.015.e0ff

Устройство для смешивания жидкостей и порошков с жидкостью

Изобретение относится к металлургии, строительной, лакокрасочной и другим отраслям промышленности. Устройство для смешивания жидкостей и порошков с жидкостью в резервуаре содержит стержень с закрепленным на одном конце рабочим органом с возможностью его вращения и продольного колебательного...
Тип: Изобретение
Номер охранного документа: 0002625471
Дата охранного документа: 14.07.2017
29.12.2017
№217.015.f6f9

Этил (3s,4r,5s)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилата этоксисукцинат в качестве противовирусного препарата и способ его получения

Изобретение относится к этил (3S,4R,5S)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилат этоксисукцинату, обладающему противовирусной способностью. Соединение по изобретению получают путем обработки этил...
Тип: Изобретение
Номер охранного документа: 0002639158
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fd04

Стенд для исследования деформации капель аэродинамическими силами

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу...
Тип: Изобретение
Номер охранного документа: 0002638376
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.099d

Способ получения дисперсно-упрочненного нанокомпозитного материала на основе алюминия

Изобретение относится к получению дисперсно-упрочненного нанокомпозитного материала на основе алюминия. Способ включает введение лигатуры в расплав матрицы на основе алюминия при одновременном воздействии на расплав ультразвукового поля. Лигатуру готовят в виде компактированных стержней из...
Тип: Изобретение
Номер охранного документа: 0002631996
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09ae

Способ получения упрочненных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению легких сплавов на основе алюминия с повышенной прочностью. Способ заключается во введении в расплав алюминия лигатуры, содержащей модифицирующую добавку, при одновременном воздействии на расплав ультразвукового поля, причем...
Тип: Изобретение
Номер охранного документа: 0002631995
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.102a

Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки

Изобретение относится к контрольно-измерительной технике, в частности к оптико-электронным устройствам измерения параметров дисперсных сред. Заявленное устройство содержит лазерный источник зондирующего излучения, фотоэлектрический приемник излучения и оптический сканер в виде вращающегося...
Тип: Изобретение
Номер охранного документа: 0002633648
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1040

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе,...
Тип: Изобретение
Номер охранного документа: 0002633730
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.17c4

Ракетный двигатель на твердом топливе

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых ступеней ракетных двигателей на твердом топливе. Двигатель содержит корпус с днищами, скрепленный с корпусом канальный заряд, снабженный компенсатором поверхности горения в виде кольцевой щели,...
Тип: Изобретение
Номер охранного документа: 0002635427
Дата охранного документа: 13.11.2017
05.07.2019
№219.017.a618

Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов

Изобретение относится к области космической техники, а более конкретно к защите космических аппаратов. Способ защиты космического аппарата от несанкционированного доступа сторонних космических объектов включает обнаружение стороннего космического объекта и защиты от него экраном. Экран выполнен...
Тип: Изобретение
Номер охранного документа: 0002693481
Дата охранного документа: 03.07.2019
06.12.2019
№219.017.ea22

Способ идентификации космических аппаратов и их обломков в космическом пространстве

Изобретение относится к ракетно-космической технике и может быть использовано для идентификации космических аппаратов и их обломков в космическом пространстве с помощью средств космического мониторинга. Способ идентификации космических аппаратов и их обломков в космическом пространстве с...
Тип: Изобретение
Номер охранного документа: 0002707982
Дата охранного документа: 03.12.2019
Показаны записи 101-110 из 135.
02.02.2019
№219.016.b662

Способ защиты космического аппарата от столкновения с активно сближающимся объектом

Изобретение относится к космической технике и может использоваться для защиты космического аппарата с активно сближающимся объектом. Защита космического аппарата от столкновения с активно сближающимся объектом осуществляется по регистрации непрерывной последовательности сигналов с нарастающей...
Тип: Изобретение
Номер охранного документа: 0002678759
Дата охранного документа: 31.01.2019
21.02.2019
№219.016.c559

Устройство для защиты космического аппарата от высокоскоростного ударного воздействия частиц космического мусора

Изобретение относится к области обеспечения долговременной устойчивости космической деятельности и может быть использовано для защиты космического аппарата (КА) от столкновения с частицами космического мусора (КМ). Устройство для защиты КА от высокоскоростного ударного воздействия частиц КМ...
Тип: Изобретение
Номер охранного документа: 0002680359
Дата охранного документа: 19.02.2019
01.03.2019
№219.016.d0cf

Способ измерения интегрального коэффициента излучения поверхности теплозащитных материалов

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. Согласно заявленному способу в предварительно нагретый цилиндрический образец теплозащитного материала, размещенного в вакуумированной камере, устанавливается...
Тип: Изобретение
Номер охранного документа: 0002468360
Дата охранного документа: 27.11.2012
29.03.2019
№219.016.eddd

Установка для исследования динамики всплытия пузырькового кластера в жидкости

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для...
Тип: Изобретение
Номер охранного документа: 0002683147
Дата охранного документа: 26.03.2019
03.04.2019
№219.016.fac7

Способ управления движением сложной формации группы космических аппаратов

Изобретение относится к управлению движением вращающейся связки космических аппаратов (КА). Способ включает переориентацию в пространстве маршевой двигательной установки (МДУ), расположенной в центре вращения связки и связанной тросами с КА. Концы тросов закрепляют на внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002683700
Дата охранного документа: 01.04.2019
06.04.2019
№219.016.fda1

Способ стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке

Изобретение относится к управлению движением космических аппаратов. В способе стабилизации углового движения некооперируемого объекта при бесконтактной транспортировке облучают объект пучком ускоренных ионов, регистрируют изображение объекта на плоском экране, управляют направлением ионного...
Тип: Изобретение
Номер охранного документа: 0002684022
Дата охранного документа: 03.04.2019
19.04.2019
№219.017.30f3

Способ получения металлизированного твердого топлива

Изобретение относится к области разработки металлизированных смесевых твердых топлив. Способ включает механическое перемешивание окислителя, горючего-связующего и металлического горючего. В качестве окислителя используют перхлорат аммония с размером частиц не более 50 мкм или нитрат аммония с...
Тип: Изобретение
Номер охранного документа: 0002415906
Дата охранного документа: 10.04.2011
23.04.2019
№219.017.36b3

Бронебойный активно-реактивный снаряд

Изобретение относится к боеприпасам, а именно к бронебойным активно-реактивным снарядам - БАРС. Технический результат - повышение эффективности бронепробиваемости при одновременном повышении точности стрельбы. Устройство содержит боевой элемент, включающий сердечник и корпус, гиперзвуковой...
Тип: Изобретение
Номер охранного документа: 0002685610
Дата охранного документа: 22.04.2019
24.05.2019
№219.017.5ddb

Способ измерения интегрального коэффициента излучения поверхности твердого материала

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение...
Тип: Изобретение
Номер охранного документа: 0002688911
Дата охранного документа: 22.05.2019
31.05.2019
№219.017.706d

Способ получения керамических изделий на основе порошков оксидов металлов

Изобретение относится к получению керамических деталей аддитивным нанесением слоев затвердевающей термопластичной суспензии. Используют термопластичную суспензию, содержащую порошок на основе системы диоксид циркония - диоксид иттрия (ZrO - YO) и парафин, и/или церезин, и/или воск с добавками...
Тип: Изобретение
Номер охранного документа: 0002689833
Дата охранного документа: 29.05.2019
+ добавить свой РИД