×
10.08.2015
216.013.6982

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины, пробуренной в газоносных породных массивах, устье скважины с притоками газа закрывают на время нарастания избыточного давления, затем перепускают часть газа в атмосферу с постоянным расходом, при этом объем скважины определяют по формуле, учитывающей измеренные параметры: атмосферное давление, давление в скважине до и после начала перепуска газа, давления в скважине в момент начала и окончания перепуска газа, расход перепускаемого газа, время между измерениями давлений и длительность перепуска газа. Кроме того, при измерении объема малодебитной скважины в нее нагнетают воздух, закрывают устье на время падения избыточного давления и затем перепускают часть воздуха в атмосферу. Способ определения объема скважина характеризуется простотой практической реализации и обеспечивает высокую точность измерений объема скважин, что особенно важно в условиях подземных горных работ при контроле качества дегазационных работ для решении задач безопасности горных работ. Техническим результатом является повышение точности измерений. 1 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости.

Известен способ определения глубины скважин, включающий измерение длины колонны труб при спускоподъемных операциях [1]. Однако способ глубины и объема скважины с помощью колонны труб является длительной и трудоемкой операцией, особенно после технологического обустройства устья дегазационной скважины.

Известен также способ определения объема негерметичной емкости, включающий измерение давления в емкости в течение времени, при этом в емкости создают избыточное давление сжатым воздухом, затем воздух перепускают в отдельную герметизированную эталонную емкость и по величине измеренных давлений рассчитывают объем [2], принятый в качестве аналога.

Недостатком аналога является невысокая точность измерений, что обусловлено невозможностью достижения стабильного давления газа в эталонной емкости, необходимого для вычислений. Кроме того, использование эталонной емкости усложняет практическую реализацию способа, особенно в шахтных условиях, и увеличивает погрешность измерений объема больших полостей.

Наиболее близким техническим решением по назначению является способ определения объема скважины, включающий заполнение полости скважины средой и измерение давления в скважине в течение времени [3], принятый в качестве прототипа.

Недостатком прототипа является невысокая точность определения объема из-за неуправляемой фильтрации заполняющей скважину жидкости в породный массив. Кроме того, при инфильтрации жидкости в поровое пространство породного массива снижается его газопроницаемость и, соответственно, эффективность функционирования дегазационной скважины. Кроме того, недостатком прототипа является высокая трудоемкость реализации, требующая использование воды для закачки в скважину.

Задачей изобретения является повышение точности измерений объема скважины, пробуренной в газоносных угольных пластах и породных массивах, повышение эффективности функционирования дегазационных скважин, а также снижение трудоемкости измерительных операций.

Это достигается тем, что в способе определения объема скважины, включающем заполнение полости скважины средой и измерение давления в скважине в течение времени, устье скважины с притоками газа закрывают на время изменения давления, затем перепускают часть газа в атмосферу с постоянным расходом, при этом измеряют величину давления до и после перепуска газа, а объем скважины определяют по формуле

где Pat - атмосферное давление;

Р0 - давление в скважине в момент времени до перепуска газа;

P1 - давление в скважине в момент времени начала перепуска газа;

Р2 - давление в скважине в момент времени окончания перепуска газа;

P3 - давление в скважине в момент времени после перепуска газа;

Δt1 - время между измерениями значений и Р0 и P1;

Δt2 - длительность перепуска газа;

Δt3 - время между измерениями значений P2 и P3;

G - объемный расход перепускаемого газа в устье скважины.

Кроме того, в малодебитную скважину предварительно нагнетают воздух.

Предложенный способ поясняется схемой, отражающей осуществление способа в газоносных породных массивах.

В породном массиве 1 ранее пробурена скважина 2, обсаженная в устье трубой 3. На выходе из трубы 3 установлены расходомер газа 4, а внутри трубы - вентиль 5, и манометр 6.

Способ осуществляют следующим образом.

Осуществляют заполнение полости скважины средой. При измерении объема скважины в газоносном породном массиве с помощью вентиля 5 перекрывают сечение трубы 3. Таким образом, устье скважины с притоками газа закрывают на время изменения давления. Вследствие поступления газа из породного массива в полость скважины 2 происходит повышение давления до величины Р0, которое фиксируют манометром 6. В соответствии с уравнением Менделева-Клапейрона масса газа в скважине составляет

где m0 - масса газа в скважине;

µ - молярная масса газа;

R - универсальная газовая постоянная;

Т - абсолютная температура газа;

V - объем скважины.

Через последующее время Δt1 от момента измерения давления Р0 до момента начала перепуска газа в атмосферу давление в скважине изменяется до величины Р1. Масса газа в скважине перед перепуском составляет

где m1 - масса газа в скважине перед перепуском газа в атмосферу.

Темп перетока массы газа между скважиной 2 и окружающим породным массивом составляет

Далее с помощью вентиля 5 устье скважины 2 открывают и в течение времени Δt2 перепускают часть газа с постоянным массовым расходом в атмосферу. Показания объемного расхода газа измеряют расходомером газа 4. При этом из скважины через устьевую трубу 3 выходит газ массой

где Δm - масса газа, перепускаемого в атмосферу через устьевую трубу 3;

Pat - атмосферное давление;

G - постоянный объемный расход газа, перепускаемого в атмосферу.

После перепуска газа в атмосферу давление газа в скважине 2 уменьшается до величины P2. Поэтому масса оставшегося газа в скважине 2 составляет

где m2 - масса газа в скважине после перепуска в атмосферу.

Затем через время Δt3 после перепуска газа измеряют величину давления Р3. На этой стадии темп перетока массы газа между скважиной 2 и окружающей средой составляет

Следовательно, средневзвешенный по времени темп перетока массы газа между скважиной 2 и окружающей средой составляет

В течение времени Δt2 истечения газа из устьевой трубы 3 другая часть газа перетекает из скважины 2 через породный массив, а также, в случае плохой герметизацию устья скважины, проходит обход устьевой трубы 3. Масса этого газа составляет

В соответствии с законом сохранения массы выполняется равенство

Из решения уравнения (9) с учетом зависимостей (1-8) получим выражение для расчета объема скважины

Таким образом на основе замеров параметров Р0, Р1, Р2, Р3, Δt1, Δt2, Δt3 и G, выполненных при реализации технологических операций данного способа, определяют объем скважины. Достоинством способа является высокая точность определения объема, поскольку для его реализации требуется минимальное количество оборудования при высокой точности измерений необходимых параметров: времени, давления и расхода газа. Способ характеризуется высокой эффективностью функционирования дегазационной скважины, поскольку в технологических операциях закрытия и открытия устья дегазационных скважин расширяются каналы фильтрации и увеличивается газопроницаемость, что способствует увеличению дебитов метана. Использование в качестве рабочей среды газа метана, поступающего из породного массива, исключает необходимость использования дополнительного оборудования для нагнетания рабочей среды в скважину. Это обеспечивает низкую трудоемкость при реализации.

При определении объема скважины 2 в породных массивах 1 с небольшой газоносностью, для сокращения длительности измерительных операций, в малодебитную скважину 2 предварительно нагнетают воздух, закрывают скважину 2 на время Δt1 падения избыточного давления от величины Р0 до величины Р1, затем перепускают часть воздуха в атмосферу с постоянным расходом G в течение времени Δt2. В конце процесса измеряют давление газа Р2. Затем через время Δt3 после перепуска газа измеряют давление газа Р3. Также как в первом варианте, расчет производят по формуле (10).

По сравнению с прототипом во втором варианте использование сжатого воздуха в качестве рабочей среды вместо воды также обеспечивает более низкую трудоемкость реализации, исключающей использования габаритных емкостей и нагнетательного оборудования.

Пример реализации 1. Шахта им. С.М. Кирова расположена в Кузнецком угольном бассейне. На шахте применяют дегазацию выемочного столба в пласте "Поленовский" с помощью скважин, пробуренных из вентиляционного и конвейерного штреков. При экспертизе эффективности работы дегазационных скважин необходимо иметь точную информацию об их объеме и длине. С этой целью устье дегазационной скважины обустраивают в соответствии с представленной схемой, при монтаже которой использованы: для измерения объемного расхода газа - ротаметр ЭМИС-МЕТА 210; для измерения давления газа в скважине используют манометр типа ТВ, серия 10; для перекрытия устья скважины - вентиль в виде шарового крана типа 11Б27п. В частом случае при реализации способа выполнены следующие операции. Заполняли полости скважины средой. Устье скважины закрыли и в результате притока газа из угольного пласта в скважине сформировалось избыточное абсолютное давление, значение которого на манометре составляет Р0=2,0 бар. Через Δt1=40 мин после измерения избыточного давления газа его абсолютное давление увеличилось и составило Р1=2,3 бар. Затем с помощью вентиля открыли устье скважины и обеспечили перепуск газа в атмосферу с постоянным расходом газа G=0,03 м3/мин в течение времени Δt2=30 мин. Абсолютное давление в скважине в конце процесса перепуска газа составляет Р2=1,5 бар. Затем через время Δt3=25 мин измерили давление газа в скважине Р3=1,6 бар. Следовательно, расчетный объем скважины по формуле (10) составляет

При диаметре скважины d=93 мм (0,093 м) длина скважины равна

Пример реализации 2. На шахте им. С.М. Кирова по пласту "Болдыревский" ряд дегазационных скважин являются малодебитными, что требует большого времени ожидания для формирования избыточного давления в скважине. Поэтому для сокращения длительности операций по определению объема скважины в нее предварительно закачивают воздух. С помощью манометра измерили избыточное давление Р0=4,0 бар. Затем, через время Δt1=40 мин зафиксировали падение давления до величины Р1=3,8 бар. После этого осуществили перепуск воздуха в атмосферу с постоянным расходом G=0,14 м3/мин в течение времени Δt2=20 мин. Измеренное давление составило Р3=2,4 бар. Затем через время Δt3=30 мин измеряют давление в скважине Р3=2,3 бар. Полученных данных достаточно для выполнения расчета по формуле (10)

Длина скважины при диаметре d=0,093 м составляет

Разработанный способ определения объема скважины обеспечивает высокую точность измерений объема и длины скважины и характеризуется простотой практической реализации, что особенно важно при решении задач горного дела в условиях подземных горных работ при контроле качества дегазационных работ. В частности, своевременный контроль за величиной объема ранее пробуренных дегазационных скважин способствует решению актуальной задачи обеспечения безопасности при разработке газоносных угольных пластов. В целом, реализация разработанного способа сокращает материальные затраты на измерительные операции при высокой точности результата измерений.

Источники информации

1. Патент RU 2215140, кл. Е21В 47/01, Е21В 47/04 от 27.10.2003.

2. Патент РФ №2026533, кл. G01F 17/00 от 09.01.1995.

3. Авт. свид. СССР №533723, кл. Е21В 47/08 от 30.10.1976 (прототип).


СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 228.
10.08.2014
№216.012.e70c

Способ формирования высококачественных моп структур с поликремниевым затвором

Изобретение относится к области микроэлектроники и может быть использовано для создания высококачественных мощных ДМОП транзисторов, КМОП интегральных схем, ПЗС-приборов. Способ включает операцию термического отжига МОП структур в температурном диапазоне от 600-850°С в электрическом поле...
Тип: Изобретение
Номер охранного документа: 0002524941
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eb01

Способ выплавки и внепечной обработки высококачественной рельсовой стали

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре. За 1-3 минуты до окончания продувки замеряют температуру...
Тип: Изобретение
Номер охранного документа: 0002525969
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb21

Рабочее колесо дымососа

Изобретение относится к области промышленного оборудования. Рабочее колесо дымососа состоит из центрального диска, двух покрышек, лопаток ступицы и приводного вала. Новым является то, что на боковых сторонах покрышек закреплены пустотелые кольца различного внешнего и внутреннего диаметров, а в...
Тип: Изобретение
Номер охранного документа: 0002526001
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f0f6

Способ выплавки и внепечной обработки высококачественной стали для железнодорожных рельсов

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали в кислородном конвертере. Способ включает загрузку в конвертер твердых шихтовых материалов, заливку жидкого чугуна, продувку расплава кислородом через фурму. При этом на днище конвертера оставляют...
Тип: Изобретение
Номер охранного документа: 0002527508
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fff4

Электропривод

Изобретение относится к электротехнике и может быть использовано в электроприводе шахтных подъемных машин (ШПМ). Технический результат заключается в снижении пути, проходимого подъемным сосудом в период аварийной остановки ШПМ, повышении межремонтного срока тормозных колодок, а следовательно, и...
Тип: Изобретение
Номер охранного документа: 0002531380
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.002e

Измельчитель-классификатор

Изобретение относится к области измельчения и разделения твердого полезного ископаемого и может быть использовано, например, при обогащении разного вида минерального сырья. Измельчитель-классификатор содержит вращающийся перфорированный барабан 2, установленный на приводных 4 и поддерживающих 5...
Тип: Изобретение
Номер охранного документа: 0002531438
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.006a

Способ переработки шламов металлургического производства

Изобретение относится к области промышленной экологии, а именно к технологиям переработки и рециклинга железосодержащих шламовых отходов, содержащих повышенные концентрации тяжелых металлов (цинк, свинец и др.), металлургического и других производств с использованием высокоинтенсивных...
Тип: Изобретение
Номер охранного документа: 0002531498
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0313

Способ получения наноразмерных пленок bi-содержащих ферритов-гранатов

Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого...
Тип: Изобретение
Номер охранного документа: 0002532185
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0315

Способ получения наноразмерных пленок феррита

Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных...
Тип: Изобретение
Номер охранного документа: 0002532187
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.0316

Способ низкотемпературного выращивания оксида кремния

Изобретение относится к области низкотемпературных технологий микро- и наноэлектроники и может быть использовано для создания радиационно-стойких интегральных схем и силовых полупроводниковых приборов. Оксид кремния получают путем нагрева кремния в атмосфере кислорода до температуры 250-400°C...
Тип: Изобретение
Номер охранного документа: 0002532188
Дата охранного документа: 27.10.2014
Показаны записи 101-110 из 230.
27.07.2014
№216.012.e489

Способ изготовления алмазного инструмента на гальванической связке

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении алмазного инструмента на гальванической связке, преимущественно для обработки хрупких неметаллических материалов. На корпусе инструмента закрепляют крупные алмазные зерна первым слоем связки...
Тип: Изобретение
Номер охранного документа: 0002524295
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5f0

Многокомпонентное биоактивное нанокомпозиционное покрытие с антибактериальным эффектом

Изобретение относится к медицинской технике, а именно к биосовместимым износостойким нанокомпозиционным тонкопленочным материалам, используемым в качестве покрытий при изготовлении имплантатов, предназначенных для замены поврежденных участков костной ткани. Покрытие выполнено на основе...
Тип: Изобретение
Номер охранного документа: 0002524654
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e70c

Способ формирования высококачественных моп структур с поликремниевым затвором

Изобретение относится к области микроэлектроники и может быть использовано для создания высококачественных мощных ДМОП транзисторов, КМОП интегральных схем, ПЗС-приборов. Способ включает операцию термического отжига МОП структур в температурном диапазоне от 600-850°С в электрическом поле...
Тип: Изобретение
Номер охранного документа: 0002524941
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eb01

Способ выплавки и внепечной обработки высококачественной рельсовой стали

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре. За 1-3 минуты до окончания продувки замеряют температуру...
Тип: Изобретение
Номер охранного документа: 0002525969
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb21

Рабочее колесо дымососа

Изобретение относится к области промышленного оборудования. Рабочее колесо дымососа состоит из центрального диска, двух покрышек, лопаток ступицы и приводного вала. Новым является то, что на боковых сторонах покрышек закреплены пустотелые кольца различного внешнего и внутреннего диаметров, а в...
Тип: Изобретение
Номер охранного документа: 0002526001
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f0f6

Способ выплавки и внепечной обработки высококачественной стали для железнодорожных рельсов

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали в кислородном конвертере. Способ включает загрузку в конвертер твердых шихтовых материалов, заливку жидкого чугуна, продувку расплава кислородом через фурму. При этом на днище конвертера оставляют...
Тип: Изобретение
Номер охранного документа: 0002527508
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fff4

Электропривод

Изобретение относится к электротехнике и может быть использовано в электроприводе шахтных подъемных машин (ШПМ). Технический результат заключается в снижении пути, проходимого подъемным сосудом в период аварийной остановки ШПМ, повышении межремонтного срока тормозных колодок, а следовательно, и...
Тип: Изобретение
Номер охранного документа: 0002531380
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.002e

Измельчитель-классификатор

Изобретение относится к области измельчения и разделения твердого полезного ископаемого и может быть использовано, например, при обогащении разного вида минерального сырья. Измельчитель-классификатор содержит вращающийся перфорированный барабан 2, установленный на приводных 4 и поддерживающих 5...
Тип: Изобретение
Номер охранного документа: 0002531438
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.006a

Способ переработки шламов металлургического производства

Изобретение относится к области промышленной экологии, а именно к технологиям переработки и рециклинга железосодержащих шламовых отходов, содержащих повышенные концентрации тяжелых металлов (цинк, свинец и др.), металлургического и других производств с использованием высокоинтенсивных...
Тип: Изобретение
Номер охранного документа: 0002531498
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0313

Способ получения наноразмерных пленок bi-содержащих ферритов-гранатов

Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов. Способ включает изготовление мишени заданного состава, обработку монокристаллической подложки галлиевого...
Тип: Изобретение
Номер охранного документа: 0002532185
Дата охранного документа: 27.10.2014
+ добавить свой РИД