×
27.07.2015
216.013.689c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ НЕСАНКЦИОНИРОВАННО УСТАНОВЛЕННЫХ НА ОБЪЕКТЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ

Вид РИД

Изобретение

Аннотация: Изобретения относятся к технике радиомониторинга радиоэлектронного оборудования в контролируемой зоне и может использоваться для выявления местоположения несанкционированно установленных в этой зоне радиоэлектронных устройств (НУОЭУ). Технический результат состоит в разработке способов обнаружения НУОЭУ, обеспечивающих повышение точности определения местоположения НУОЭУ при отсутствии предварительных данных о параметрах электромагнитных сигналов радиоэлектронных средств, в том числе установленных в пределах контролируемой зоны (КЗ). Для этого создают комбинированную пеленгационную сеть, где используются как радиопередающие, так и радиоприемные средства. 3 н. и 1 з.п. ф-лы, 4 ил.

Изобретения относятся к способам радиомониторинга радиоэлектронного оборудования в контролируемой зоне и могут быть использованы для выявления местоположения несанкционированно установленных в этой зоне радиоэлектронных устройств.

Известен способ обнаружения радиоэлектронных средств (патент РФ № 2258242, класс G01S 3/46, 11/02), предусматривающий прием, усиление сигналов, измерение их параметров, определение излучающих радиоэлектронных средств и местоположения источника излучения.

Недостатком данного способа является большое количество используемых в процессе обнаружения технических средств, а также возможность ложного реагирования на электронные установки, находящиеся за пределами контролируемой зоны.

Известен способ обнаружения и идентификации электронных устройств (патент РФ № 2150120), согласно которому обнаруживают радиочастотные сигналы, принимают их, усиливают и разделяют на спектральные составляющие, сравнивают полученные спектральные составляющие с частотами заранее определенных спектров и по результатам сравнения идентифицируют несанкционированно установленные на объекте электронные устройства (НУОЭУ).

Недостатком данного аналога является низкая достоверность идентификации радиоэлектронных средств, обусловленная ограниченным числом ранее запомненных параметров сигналов известных НУОЭУ.

Известен способ обнаружения и идентификации несанкционированно установленных на объекте электронных устройств (патент РФ № 2309416 класс G01R 29/08.), согласно которому предварительно формируют базу данных о спектрах сигналов известных НУОЭУ, принимают сигналы от излучающих объектов, усиливают их, измеряют их параметры, анализируют их и по результатам анализа делают вывод о наличии в контролируемом помещении сигналов, излучаемых НУОЭУ.

Недостатком является относительно невысокая вероятность обнаружения НУОЭУ в контролируемой зоне, обусловленной как ограниченностью базы параметров электромагнитных сигналов, априорно известных устройств, которые могут быть несанкционированно установлены, так и из-за возможности ложного реагирования на электромагнитные сигналы, излученные радиоэлектронными средствами, находящимися за пределами контролируемой зоны.

Наиболее близким по своей технической сущности является способ обнаружения и идентификации несанкционированно установленных на объекте электронных устройств по патенту РФ № 2397501 «Способ обнаружения несанкционированно установленных на объекте электронных устройств», класс G01R 29/08. заявл. 23.03.2009. Способ-прототип заключается в том, что принимают сигналы от излучающих объектов, измеряют их параметры, анализируют их, облучают высокочастотным сигналом, промодулированным тестовой последовательностью, контролируемую зону и по результатам анализа делают вывод о наличии в контролируемой зоне (КЗ) сигналов, излучаемых НУОЭУ.

Недостатком способа-прототипа является невозможность определить точное местоположение излучающего радиоэлектронного устройства и его принадлежность к контролируемой зоне.

Целью заявленных технических решений является разработка способов обнаружения НУОЭУ, обеспечивающих повышение точности определения местоположения НУОЭУ при отсутствии предварительных данных о параметрах электромагнитных сигналов радиоэлектронных средств, в том числе установленных в пределах контролируемой зоны (КЗ). Отличительной особенностью предлагаемых способов является создание комбинированной пеленгационной сети, где используются как радиопередающие так и радиоприемные средства.

1. Технический результат достигается тем, что в заявленном способе определения местоположения несанкционированно установленных на объекте электронных устройств, заключающемся в том, что принимают в предварительно заданной полосе частот электромагнитные сигналы в контролируемом помещении, усиливают их, измеряют их параметры, запоминают принимаемые сигналы и соответствующие им азимутальные углы максимума диаграммы направленности в момент фиксации ЭМС, формируют и запоминают для каждого из принятых сигналов спектральную характеристику, выделяют из нее составляющую с максимальной амплитудой, генерируют тестовый сигнал, промоделированный предварительно заданной тестовой последовательностью, облучают им с использованием направленной передающей антенны контролируемое помещение, изменяя ориентацию максимума диаграммы направленности в пределах от 0 до 360°, запоминают принятые электромагнитные сигналы (ЭМС) при облучении контролируемого помещения тестовым сигналом, формируют и запоминают для каждого из принятых в момент облучения тестовым сигналом контролируемого помещения электромагнитных сигналов их спектральную характеристику, выделяют их нее составляющую с максимальной амплитудой, для каждого из принятых сигналов сравнивают частоту максимальной спектральной составляющей без облучения и частотой максимальной спектральной составляющей сигнала в момент облучения контролируемого помещения тестовым сигналом, фиксируют сдвиг частот сравниваемых спектральных составляющих, отличающийся тем, что предварительно формируют множество исходных данных: диапазон рабочих частот, на которых могут работать НУОЭУ, шаг перестройки, полосу пропускания, вид модуляции; задают координаты контролируемого помещения и координаты расположения узконаправленной передающей антенны до и после перемещения, вводят значения диапазона частот в сканирующий радиоприемник, задают расстояние R1 между узконаправленной передающей антенной, подключенной к высокочастотному радиопередатчику, и сканирующим радиоприемником с ненаправленной (штыревой) приемной антенной, включают сканирующий радиоприемник в режим сканирования в заданном диапазоне рабочих частот, присваивают условный номер каждому из принятых ЭМС, заносят в базу данных спектральные характеристики всех ЭМС в заданном диапазоне рабочих частот, включают высокочастотный радиопередатчик, подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, считывают из базы данных спектральную характеристику ЭМС № 1, определяют частоту его максимальной спектральной составляющей, одновременно с облучением тестовым сигналом контролируемого помещения осуществляется прием сканирующим радиоприемником ЭМС № 1 на ненаправленную (штыревую) антенну, запоминают азимутальный угол α узконаправленной передающей антенны, считывают из базы данных спектральные характеристики остальных ЭМС, повторяют те же действия, что и с ЭМС № 1, если при полном обороте узконаправленной передающей антенны сдвиг частот сравниваемых спектральных составляющий в момент облучения не зафиксирован, то делают вывод о нахождении источника ЭМИ за пределами контролируемого помещения и исключают из базы данных, если сдвиг частот в момент облучения зафиксирован, то высокочастотный радиопередатчик с узконаправленной передающей антенной и генератор тестовой последовательности любым способом перемещают (как продолжение радиуса) на противоположную сторону относительно сканирующего радиоприемника, сохраняя при этом заданное расстояние R, повторяют те же действия, что и при первом расположении высокочастотного радиопередатчика, запоминают азимутальный угол (3 направленной передающей антенны, если при полном обороте передающей антенны сдвиг частот сравниваемых спектральных составляющий в момент облучения не зафиксирован, то делают вывод о нахождении источника ЭМИ за пределами контролируемого помещения и данные ЭМС исключают из базы данных, вычисляют координаты ЭМС, для которых определены азимутальные углы α и β, определяют принадлежность координат ЭМС множеству координат контролируемого помещения, в случае попадания в пределы контролируемого помещения делают вывод о местоположении несанкционированно установленных на объекте электронных устройств.

Благодаря новой совокупности существенных признаков достигается точное определение местоположения НУОЭУ.

Заявленный способ в первом варианте поясняется следующими чертежами, на которых показано:

Фиг. 1 - схема установки для мониторинга электромагнитных сигналов (ЭМС) в контролируемой зоне.

Фиг. 2 - принятые электромагнитные сигналы.

Заявленный способ реализуется следующим образом. В пределах контролируемой зоны 3 (фиг. 1) установлен высокочастотный радиопередатчик 1 (фиг. 1) с подключенной узконаправленной передающей антенной, расположенной на поворотном устройстве, сканирующий радиоприемник 2 (фиг. 1) с подключенной ненаправленной (штыревой) приемной антенной. В пределах контролируемой зоны могут быть обнаружены электромагнитные сигналы от НУОЭУ 5 (фиг. 1) и источников электромагнитного излучения (ИЭМИ) 4 (фиг. 1), расположенных за пределами контролируемой зоны.

1. Исходя из анализа технических возможностей злоумышленника формируют множество исходных данных, включающих: диапазон рабочих частот ΔF∈[Fmin÷Fmax] МГц, на которых могут работать несанкционированно установленные на объекте электронные устройства, а также шаг перестройки, полосу пропускания и вид модуляции. Задают координаты контролируемой зоны и координаты расположения узконаправленной передающей антенны до и после перемещения.

2. Вводят значения диапазона частот в сканирующий радиоприемник. Задают расстояние между узконаправленной передающей антенной, подключенной к высокочастотному радиопередатчику 1 (фиг. 1), и сканирующим радиоприемником 2 (фиг. 1) с ненаправленной (штыревой) приемной антенной.

3. Включают сканирующий радиоприемник 2, подключенный к ненаправленной приемной штыревой антенне в режиме сканирования в заданном диапазоне частот.

4. Принимают (фиг. 2, а), присваивают условный номер и заносят в базу данных спектральные характеристики всех электромагнитных сигналов в полосе частот заданной для мониторинга ΔF∈[Fmin÷Fmax] МГц.

5. Включают высокочастотный радиопередатчик 1, подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве и генерируют сигнал, промодулированный тестовой последовательностью.

6. Из базы данных считывают спектральную характеристику первого сигнала, определяют его несущую частоту путем выделения составляющей с максимальной амплитудой (фиг. 2, б, в.).

7. Узконаправленную передающую антенну высокочастотного радиопередатчика 1 отдельно или совместно с радиопередатчиком вращают (любым способом) с заданным шагом в диапазоне от 0 до 360°.

8. Одновременно, с облучением сигналом (промодулированным тестовой последовательностью) пространства контролируемой зоны, осуществляется прием на ненаправленную приемную антенну сканирующим радиоприемником 2 выбранного электромагнитного сигнала (фиг. 2). В момент фиксации сдвига несущей частоты сигнала, на который настроен сканирующий радиоприемник запоминают азимутальный угол α узконаправленной передающей антенны высокочастотного радиопередающего устройства.

9. Если при полном обороте узконаправленной передающей антенны на 360° сдвиг несущей частоты не зафиксирован, то принимается решение, что этот сигнал источника электромагнитного излучения находится за пределами контролируемой зоны и он исключается из базы данных. Выбирают из базы данных следующую спектральную характеристику и повторяют процедуры (пункты 7-8) для всех зафиксированных и занесенных в базу данных электромагнитных сигналов.

10. Если сдвиг частот зафиксирован, то высокочастотный радиопередатчик с узконаправленной передающей антенной и генератор тестовой последовательности любым способом перемещают, как продолжение радиуса, на противоположную сторону относительно сканирующего радиоприемника, сохраняя при этом расстояние R1.

11. Повторяем действия, описанные в пунктах 7-8 и получаем азимутальный угол β направленной передающей антенны высокочастотного радиопередатчика.

12. Если при полном обороте узконаправленной передающей антенны на 360° сдвиг несущей частоты не зафиксирован, то принимают решение, что этот сигнал источника электромагнитного сигнала находится за пределами контролируемой зоны, и он исключается из базы данных. Выбирают из базы данных следующую спектральную характеристику и повторяют процедуру (начиная с пункта 7) для всех зафиксированных и занесенных в базу данных электромагнитных сигналов.

13. Если сдвиг частот зафиксирован вычисляют координаты НУОЭУ, для чего обозначим:

В - расстояние между местоположениями узконаправленной передающей антенны - база пеленгования;

R1 - расстояние между сканирующим радиоприемником и узконаправленной передающей антенной при нахождении азимутального угла α и расстояние между сканирующим радиоприемником и узконаправленной передающей антенной при нахождении азимутального угла β;

а - расстояние от узконаправленной передающей антенны (при нахождении азимутального угла α до местоположения ИЭМИ;

c - расстояние от узконаправленной антенны (при нахождении азимутального угла β до местоположения ИЭМИ;

α и β - углы диаграммы направленности узконаправленной антенны.

Затем, используя значения азимутальных углов α и β ориентации диаграммы направленности, вычисляют значение угла γ между лучами направленными на концы отрезка B (Справочник по элементарной математике. Изд. 22. М.Я. Выгодский, Элиста.: 1996 г. с.271):

γ=180-α-β.

Используя теорему синусов (Справочник по элементарной математике. Изд. 22. М.Я. Выгодский, Элиста.: 1996 г. с.362), находят значения а и с, для чего предварительно вычисляют значение В:

B=R1·2

Вычислив значения а и с, находят координаты вершины А, которая является предполагаемым местом расположения источника электромагнитного излучения. После чего определяют принадлежность координат излучающего электронного устройства множеству координат контролируемой зоны. Делают вывод о наличии в пределах контролируемой зоны несанкционированно установленного на объекте электронного устройства.

Таким образом, обеспечивается достижение технического результата.

2. Технический результат достигается тем, что в заявленном способе определения местоположения несанкционированно установленных на объекте электронных устройств, заключающемся в том, что принимают в предварительно заданной полосе частот электромагнитные сигналы в контролируемом помещении, усиливают их, измеряют их параметры, запоминают принимаемые сигналы и соответствующие им азимутальные углы максимума диаграммы направленности в момент фиксации ЭМС, формируют и запоминают для каждого из принятых сигналов спектральную характеристику, выделяют из нее составляющую с максимальной амплитудой, генерируют тестовый сигнал, промоделированный предварительно заданной тестовой последовательностью, облучают им с использованием направленной передающей антенны контролируемое помещение, изменяя ориентацию максимума диаграммы направленности в пределах от 0 до 360°, запоминают принятые ЭМС при облучении контролируемого помещения тестовым сигналом, формируют и запоминают для каждого из принятых в момент облучения тестовым сигналом контролируемого помещения электромагнитных сигналов их спектральную характеристику, выделяют их нее составляющую с максимальной амплитудой, для каждого из принятых сигналов сравнивают частоту максимальной спектральной составляющей без облучения и частотой максимальной спектральной составляющей сигнала в момент облучения контролируемого помещения тестовым сигналом, фиксируют сдвиг частот сравниваемых спектральных составляющих, отличающийся тем, что предварительно формируют множество исходных данных: диапазон рабочих частот, на которых могут работать НУОЭУ, шаг перестройки, полосу пропускания, вид модуляции; задают координаты контролируемого помещения и координаты расположения высокочастотного радиопередатчика № 1 и высокочастотного радиопередатчика № 2, вводят значения диапазона частот в сканирующий радиоприемник, задают расстояние R2 между высокочастотным радиопередатчиком № 1 и сканирующим радиоприемником с ненаправленной (штыревой) приемной антенной и расстояние R3 между высокочастотным радиопередатчиком № 2 и сканирующим радиоприемником с ненаправленной (штыревой) приемной антенной, включают сканирующий радиоприемник в режим сканирования в заданном диапазоне рабочих частот, присваивают условный номер каждому из принятых ЭМС, заносят в базу данных спектральные характеристики всех ЭМС в заданном диапазоне рабочих частот, включают высокочастотный радиопередатчик № 1, подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, считывают из базы данных спектральную характеристику ЭМС № 1, определяют частоту его максимальной спектральной составляющей, одновременно с облучением тестовым сигналом контролируемого помещения осуществляется прием сканирующим радиоприемником ЭМС № 1 на ненаправленную (штыревую) антенну, запоминают азимутальный угол α узконаправленной передающей антенны, считывают из базы данных спектральные характеристики остальных ЭМС, повторяют те же действия, что и с ЭМС № 1, если при полном обороте узконаправленной передающей антенны сдвиг частот сравниваемых спектральных составляющий в момент облучения не зафиксирован, то делают вывод о нахождении источника ЭМИ за пределами контролируемого помещения и исключают из базы данных, если сдвиг частот в момент облучения зафиксирован, то выключают высокочастотный радиопередатчик № 1 и включают высокочастотный радиопередатчик № 2, подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, и генерируют тестовый сигнал, повторяют те же действия, что и для высокочастотного радиопередатчика № 1, запоминают азимутальный угол β направленной передающей антенны, если при полном обороте передающей антенны сдвиг частот сравниваемых спектральных составляющий в момент облучения не зафиксирован, то делают вывод о нахождении источника ЭМИ за пределами контролируемого помещения и данные ЭМС исключают из базы данных, вычисляют координаты ЭМС, для которых определены азимутальные углы α и β, определяют принадлежность координат ЭМС множеству координат контролируемого помещения, в случае попадания в пределы контролируемого помещения делают вывод о местоположении несанкционированно установленных на объекте электронных устройств.

Заявленный способ во втором варианте поясняется следующими чертежами, на которых показано:

Фиг. 3 - схема установки для мониторинга электромагнитных сигналов (ЭМС) в контролируемой зоне.

Реализация заявленного способа поясняется следующим образом. В пределах контролируемой зоны 3 (фиг. 3) установлены два высокочастотных радиопередатчика 1 (6 фиг. 3), расположенных на фиксированном расстоянии друг от друга с подключенными узконаправленными передающими антеннами, расположенными на поворотных устройствах, сканирующий радиоприемник 2 (фиг. 3) с подключенной ненаправленной (штыревой) приемной антенной. В пределах контролируемой зоны могут быть обнаружены электромагнитные сигналы от НУОЭУ 5 ( фиг. 3) и источников электромагнитного излучения 4 (фиг. 3), расположенных за пределами контролируемой зоны.

1. Исходя из анализа технических возможностей злоумышленника, формируют множество исходных данных, включающих: диапазон рабочих частот ΔF∈[Fmin÷Fmax] МГц, на которых могут работать несанкционированно установленные на объекте электронного устройства, а также шаг перестройки, полосу пропускания и вид модуляции. Задают координаты контролируемой зоны и координаты расположения узконаправленных передающих антенн.

2. Вводят значения диапазона частот в сканирующий радиоприемник. Задают расстояние R2 между узконаправлениой передающей антенной, подключенной к высокочастотному радиопередатчику 1 (фиг. 3) и сканирующим радиоприемником с ненаправленной (штыревой) приемной антенной. Задают расстояние R3 между узконаправленной передающей антенной, подключенной к высокочастотному радиопередатчику 6 (фиг. 3), и сканирующим радиоприемником с ненаправленной (штыревой) приемной антенной.

3. Включают сканирующий радиоприемник, подключенный к ненаправленной приемной штыревой антенне) в режиме сканирования в заданном диапазоне частот.

4. Принимают (фиг. 2, а), присваивают условный номер и заносят в базу данных спектральные характеристики всех электромагнитных сигналов в полосе частот заданной для мониторинга ΔF∈[Fmin÷Fmax] МГц.

5. Включают высокочастотный радиопередатчик 1 (фиг. 3), подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, и генерируют сигнал, промоделированный тестовой последовательностью.

6. Из базы данных считывают спектральную характеристику первого сигнала, определяют его несущую частоту (путем выделения составляющей с максимальной амплитудой фиг. 2,б, в).

7. Узконаправленную передающую антенну высокочастотного радиопередатчика 1 (фиг. 3) отдельно или совместно с радиопередатчиком вращают (любым способом) с заданным шагом в диапазоне от 0 до 360°.

8. Одновременно, с облучением сигналом (промодулированным тестовой последовательностью) пространства контролируемой зоны, осуществляют прием на ненаправленную приемную антенну, сканирующим радиоприемником, выбранного электромагнитного сигнала. В момент фиксации сдвига несущей частоты сигнала, на который настроен сканирующий радиоприемник, запоминают азимутальный угол α узконаправленной передающей антенны высокочастотного радиопередатчика (1 фиг. 3).

9. Если при полном обороте узконаправленной передающей антенны на 360° сдвиг несущей частоты не зафиксирован, то принимают решение, что этот сигнал источника электромагнитного излучения находится за пределами контролируемой зоны, и он исключается из базы данных. Выбирают из базы данных следующую спектральную характеристику и повторяют процедуры (пункты 7-8) для всех зафиксированных и занесенных в базу данных электромагнитных сигналов.

10. Если сдвиг частот зафиксирован, выключают высокочастотный радиопередатчик 1 (фиг. 3) и включают высокочастотный радиопередатчик 6 (фиг. 3), подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, и генерируют сигнал, промодулированный тестовой последовательностью.

11. Из базы данных считывают спектральную характеристику первого сигнала, определяют его несущую частоту (путем выделения составляющей с максимальной амплитудой).

12. Узконаправленная передающая антенна высокочастотного радиопередатчика 6 (фиг. 3) отдельно или совместно с радиопередатчиком вращается (любым способом) с заданным шагом в диапазоне от 0 до 360°.

13. Одновременно, с облучением сигналом (промоделированным тестовой последовательностью) пространства контролируемой зоны, осуществляется прием на ненаправленную приемную антенну сканирующим радиоприемником выбранного электромагнитного сигнала. В момент фиксации сдвига несущей частоты сигнала, на который настроен сканирующий радиоприемник, запоминают азимутальный угол β узконаправленной передающей антенны высокочастотного радиопередатчика 6 (фиг. 3).

14. Если при полном обороте узконаправленной передающей антенны на 360° сдвиг несущей частоты не зафиксирован, то принимают решение, что этот сигнал источника электромагнитного сигнала находится за пределами контролируемой зоны, и он исключается из базы данных. Выбирают из базы данных следующую спектральную характеристику и, начиная с пятого пункта, повторяют процедуру для всех зафиксированных и занесенных в базу данных электромагнитных сигналов.

15. Если сдвиг частот зафиксирован, вычисляют координаты НУОЭУ, для чего обозначим:

В - расстояние между узконаправленными передающими антеннами высокочастотных радиопередатчиков 1, 6 (фиг. 3) - база пеленгования.

R2 - расстояние между сканирующим радиоприемником и узконаправленной передающей антенной высокочастотного радиопередатчика (1 фиг. 3) при нахождении азимутального угла α;

R3 - расстояние между сканирующим радиоприемником и узконаправленной передающей антенной высокочастотного радиопередатчика (6 фиг. 3) при нахождении азимутального угла β;

а - расстояние от узконаправленной передающей антенны высокочастотного радиопередатчика (1 фиг. 3) (при нахождении азимутального угла α) до местоположения ИЭМИ;

с - расстояние от узконаправленной антенны высокочастотного радиопередатчика (с фиг. 3) (при нахождении азимутального угла β) до местоположения ИЭМИ;

α и β - углы диаграммы направленности узконаправленных антенн высокочастотных радиопередатчиков 1, 6 (фиг. 3).

Затем, зная значения азимутальных углов α и β ориентации диаграммы направленности, вычисляют значение угла у местонахождения ИЭМИ следующим образом (Справочник по элементарной математике. Изд. 22. М.Я. Выгодский, Элиста.: 1996 г.с.271):

γ=180-α-β.

Используют теорему синусов для нахождения значений а и c, для чего предварительно вычисляют значение B (Справочник по элементарной математике. Изд. 22. М.Я. Выгодский, Элиста.: 1996 г. с.362):

B=R2+R3

Вычислив значения а и с, находят координаты вершины Л, которая является предполагаемым местом расположения источника электромагнитного излучения. После чего определяют принадлежность координат излучающего электронного устройства множеству координат контролируемой зоны. Делают вывод о наличии в пределах контролируемой зоны несанкционированно установленного на объекте электронного устройства.

Таким образом, обеспечивается достижение технического результата.

3. Технический результат достигается тем, что в заявленном способе определения местоположения несанкционированно установленных на объекте электронных устройств, заключающемся в том, что принимают в предварительно заданной полосе частот электромагнитные сигналы в контролируемом помещении, усиливают их, измеряют их параметры, запоминают принимаемые сигналы и соответствующие им азимутальные углы максимума диаграммы направленности в момент фиксации ЭМС, формируют и запоминают для каждого из принятых сигналов спектральную характеристику, выделяют из нее составляющую с максимальной амплитудой, генерируют тестовый сигнал, промодулированный предварительно заданной тестовой последовательностью, облучают им с использованием направленной передающей антенны контролируемое помещение, изменяя ориентацию максимума диаграммы направленности в пределах от 0 до 360°, запоминают принятые ЭМС при облучении контролируемого помещения тестовым сигналом, формируют и запоминают для каждого из принятых в момент облучения тестовым сигналом контролируемого помещения электромагнитных сигналов их спектральную характеристику, выделяют их нее составляющую с максимальной амплитудой, для каждого из принятых сигналов сравнивают частоту максимальной спектральной составляющей без облучения и частотой максимальной спектральной составляющей сигнала в момент облучения контролируемого помещения тестовым сигналом, фиксируют сдвиг частот сравниваемых спектральных составляющих, отличающийся тем, что предварительно формируют множество исходных данных: диапазон рабочих частот, на которых могут работать НУОЭУ, шаг перестройки, полосу пропускания, вид модуляции; задают координаты контролируемого помещения и координаты расположения высокочастотного радиопередатчика и сканирующего радиоприемника, вводят значения диапазона частот в сканирующий радиоприемник, задают расстояние R4 между узконаправленной передающей антенной, подключенной к высокочастотному радиопередатчику, и сканирующим радиоприемником с ненаправленной (штыревой) приемной антенной, дополнительно устанавливают узконаправленную антенну на сканирующий радиоприемник, включают устройство переключения между сканирующим радиоприемником и высокочастотным радиопередатчиком, включают сканирующий радиоприемник в режим сканирования в заданном диапазоне рабочих частот, присваивают условный номер каждому из принятых ЭМС, заносят в базу данных спектральные характеристики всех ЭМС в заданном диапазоне рабочих частот, включают высокочастотный радио передатчик, подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, считывают из базы данных спектральную характеристику ЭМС № 1, определяют частоту его максимальной спектральной составляющей, одновременно с облучением тестовым сигналом контролируемого помещения осуществляется прием сканирующим радиоприемником ЭМС № 1 на ненаправленную (штыревую) антенну, запоминают азимутальный угол α узконаправленной передающей антенны, считывают из базы данных спектральные характеристики остальных ЭМС, повторяют те же действия, что и с ЭМС № 1. Если при полном обороте узконаправленной передающей антенны сдвиг частот сравниваемых спектральных составляющий в момент облучения не зафиксирован, то делают вывод о нахождении источника ЭМИ за пределами контролируемого помещения и исключают из базы данных, если сдвиг частот в момент облучения зафиксирован, то устройство переключения переключает вход сканирующего радиоприемника на узконаправленную приемную антенну, включают высокочастотный радиопередатчик, подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, и генерируют тестовый сигнал, одновременно с облучением тестовым сигналом контролируемого помещения осуществляется сканирующим радиоприемником на узконаправленную антенну электромагнитных сигналов, запоминают азимутальный угол β направленной передающей антенны, если при полном обороте передающей антенны сдвиг частот сравниваемых спектральных составляющий в момент облучения не зафиксирован, то делают вывод о нахождении источника ЭМИ за пределами контролируемого помещения и данные ЭМС исключают из базы данных, вычисляют координаты ЭМС, для которых определены азимутальные углы α и β, определяют принадлежность координат ЭМС множеству координат контролируемого помещения, в случае попадания в пределы контролируемого помещения делают вывод о местоположении несанкционированно установленных на объекте электронных устройств.

Заявленный способ в третьем варианте поясняется следующими чертежами, на которых показано:

Фиг. 4. - схема установки для мониторинга электромагнитных сигналов (ЭМС) в контролируемой зоне.

Заявленный способ реализуется следующим образом. Контролируемая зона 3 (фиг. 4), находится в зоне обнаружения 6 (фиг. 4), в пределах контролируемой зоны установлен высокочастотный радиопередатчик 1 (фиг. 4) с подключенной узконаправленной передающей антенной 7 (фиг. 4), расположенной на поворотном устройстве, сканирующий радиоприемник 2 (фиг. 4) с подключенными через устройство переключения 9 (фиг. 4) узконаправленной приемной антенной 8 (фиг. 4), расположенной на поворотном устройстве, и ненаправленной (штыревой) приемной антенной 6 (фиг. 4). В пределах контролируемой зоны могут быть обнаружены электромагнитные сигналы от НУОЭУ 5 (фиг. 4) и источников электромагнитного излучения (ИЭМИ) 4 (фиг. 4) за пределами контролируемой зоны.

1. Исходя из анализа технических возможностей злоумышленника формируют множество исходных данных: диапазон рабочих частот ΔF∈[Fmin+Fmax] МГц, на которых могут работать несанкционированно установленные на объекте электронные устройства, а также шаг перестройки, полосу пропускания и вид модуляции. Задают координаты контролируемой зоны и координаты расположения узконаправленной передающей антенны 7 (фиг. 4) и узконаправленной приемной антенны 8 (фиг. 4).

2. Вводят значения диапазона частот в сканирующий радиоприемник. Задают расстояние между узконаправленной передающей антенной 7 (фиг. 4), подключенной к высокочастотному радиопередатчику 1 (фиг. 4), и узконаправленной приемной антенной 8 (фиг. 4), подключенной к сканирующему радиоприемнику 2 (фиг. 4). Устройство переключения 9 (фиг. 4) переключает вход сканирующего радиоприемника 2 (фиг. 4) на ненаправленную (штыревую) приемную антенну 6 (фиг. 4).

3. Включают сканирующий радиоприемник, подключенный к приемной ненаправленной (штыревой) антенне 6 (фиг. 4)) в режиме сканирования в заданном диапазоне частот.

4. Принимают, присваивают условный номер и заносят в базу данных спектральные характеристики всех электромагнитных сигналов в полосе частот заданной для мониторинга ΔF∈[Fmin-Fmaх] МГц.

5. Включают высокочастотный радиопередатчик 1 (фиг. 4), подключенный к узконаправленной передающей антенне, размещенной на поворотном устройстве, и генерируют сигнал, промодулированный тестовой последовательностью.

6. Из базы данных считывают спектральную характеристику первого сигнала, определяют его несущую частоту (путем выделения составляющей с максимальной амплитудой).

7. Узконаправленная передающая антенна 7 (фиг. 4) высокочастотного радиопередатчика (1 фиг. 4) отдельно или совместно с радиопередатчиком вращается (любым способом) с заданным шагом в диапазоне от 0 до 360°.

8. Одновременно, с облучением сигналом, промодулированным тестовой последовательностью, пространства контролируемой зоны, осуществляется прием на ненаправленную антенну 6 (фиг. 4) сканирующим радиоприемником 2 (фиг. 4) выбранного электромагнитного сигнала. В момент фиксации сдвига несущей частоты сигнала, на который настроен сканирующий радиоприемник, запоминают азимутальный угол α узконаправленной передающей антенны 7 (фиг. 4) высокочастотного радиопередающего устройства 1 (фиг. 4).

9. Если при полном обороте узконаправленной передающей антенны 7 (фиг. 4) на 360° сдвиг несущей частоты не зафиксирован, то принимается решение, что этот сигнал источника электромагнитного излучения находится за пределами контролируемой зоны и он исключается из базы данных. Выбирают из базы данных следующую спектральную характеристику и повторяют процедуры (пункты 7-8) для всех зафиксированных и занесенных в базу данных электромагнитных сигналов.

10. Если сдвиг частот зафиксирован, устройство переключения 9 (фиг. 4) переключает вход сканирующего радиоприемника 2 (фиг. 4) на узконаправленную приемную антенну 8 (фиг. 4), размещенную на поворотном устройстве.

11. Узконаправленная приемная антенна 8 (фиг. 4) сканирующего радиоприемника 2 (фиг. 4) вращается (любым способом) с заданным шагом в диапазоне от 0 до 360°.

12. Одновременно, с облучением сигналом, промодулированным тестовой последовательностью, пространства контролируемой зоны, осуществляется прием на узконаправленную приемную антенну, сканирующим радиоприемником 2 (фиг. 4), выбранного электромагнитного сигнала. При фиксации сдвига несущей частоты и достижении максимального амплитудного значения сигнала, на который настроен сканирующий радиоприемник, запоминают азимутальный угол β узконаправленной приемной антенны (8 фиг. 4) сканирующего радиоприемника 2 (фиг. 4).

13. Если при полном обороте узконаправленной приемной антенны (8 фиг. 4) на 360° сдвиг несущей частоты не зафиксирован, то принимается решение, что этот сигнал источника электромагнитного сигнала находится за пределами контролируемой зоны и он исключается из базы данных. Выбирают из базы данных следующую спектральную характеристику и начиная с седьмого пункта повторяют процедуру для всех зафиксированных и занесенных в базу данных электромагнитных сигналов.

14. Если сдвиг частот зафиксирован вычисляют координаты НУОЭУ, для чего обозначим:

R4 - расстояние между узконаправленной передающей антенной (7 фиг. 4) и узконаправленной приемной антенной (8 фиг. 4) - база пеленгования;

а - расстояние от узконаправленной передающей антенны (7 фиг. 4) высокочастотного радиопередатчика (1 фиг. 4) (при нахождении азимутального угла α) до местоположения ИЭМИ;

c - расстояние от узконаправленной приемной антенны 8 (фиг. 4) сканирующего радиоприемника (2 фиг. 4) (при нахождении азимутального угла β) до местоположения ИЭМИ;

α - угол диаграммы направленности узконаправленной передающей антенны 7 (фиг. 4) высокочастотного радиопередатчика 1 (фиг. 4);

β - угол диаграммы направленности узконаправленной приемной антенны (8 фиг. 4) сканирующего радиоприемника 2 (фиг. 4).

Затем, используя значения азимутальных углов α и β ориентации диаграммы направленности узконаправленной передающей антенны 7 (фиг. 4) и узконаправленной приемной антенны 8 (фиг. 4) вычисляют значение угла у между лучами направленными на концы отрезка B (Справочник по элементарной математике. Изд. 22. М.Я. Выгодский, Элиста.: 1996 г. с.271):

γ=180-α-β

Используя теорему синусов (Справочник по элементарной математике. Изд. 22. М.Я. Выгодский, Элиста.: 1996 г. с.362) находят значения а и c по формуле:

Вычислив значения а и c, находят координаты вершины А, которая является предполагаемым местом расположения источника электромагнитного излучения. После чего определяют принадлежность координат излучающего электронного устройства множеству координат контролируемой зоны. Делают вывод о наличии в пределах контролируемой зоны несанкционированно установленного на объекте электронного устройства.

Таким образом, обеспечивается достижение технического результата.


СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ НЕСАНКЦИОНИРОВАННО УСТАНОВЛЕННЫХ НА ОБЪЕКТЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ НЕСАНКЦИОНИРОВАННО УСТАНОВЛЕННЫХ НА ОБЪЕКТЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ НЕСАНКЦИОНИРОВАННО УСТАНОВЛЕННЫХ НА ОБЪЕКТЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ НЕСАНКЦИОНИРОВАННО УСТАНОВЛЕННЫХ НА ОБЪЕКТЕ ЭЛЕКТРОННЫХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 74.
10.01.2013
№216.012.1a3f

Способ защиты информационно-вычислительных сетей от компьютерных атак

Изобретение относится к электросвязи и может быть использовано в системах защиты от компьютерных атак путем их оперативного выявления и блокирования в информационно-вычислительных сетях. Техническим результатом является повышение оперативности обнаружения компьютерной атаки. Способ заключается...
Тип: Изобретение
Номер охранного документа: 0002472211
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a45

Способ обработки дейтаграмм сетевого трафика для защиты информационно-вычислительных сетей (варианты)

Изобретение относится к области защиты информации в компьютерных системах и сетях. Техническим результатом является повышение достоверности обнаружения подлога компьютерных адресов отправителя и получателя сетевых дейтаграмм. Способ заключается в следующем: после выделения адресов отправителя S...
Тип: Изобретение
Номер охранного документа: 0002472217
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.284c

Способ защиты вычислительных сетей

Изобретение относится к электросвязи. Техническим результатом является повышение защищенности, в том числе достоверности и оперативности обнаружения несанкционированного воздействия на вычислительную сеть. Результат достигается тем, что задают множество эталонных наборов появлений...
Тип: Изобретение
Номер охранного документа: 0002475836
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2c8b

Способ моделирования сети связи

Изобретение относится к области моделирования и может быть использовано при проектировании радиоэлектронных и технических систем для оценки эксплуатационных показателей. Техническим результатом является обеспечение возможности моделирования с учетом перемещения абонентов сети связи и...
Тип: Изобретение
Номер охранного документа: 0002476930
Дата охранного документа: 27.02.2013
20.03.2013
№216.012.303a

Способ обеспечения защищенности автоматизированной системы

Изобретение относится к области электросвязи и вычислительной техники, а именно к способу защиты автоматизированных систем. Способ обеспечения защищенности автоматизированной системы, заключающийся в том, что задают параметры N≥2, характеризующие воздействие мультимедийного потока, параметры...
Тип: Изобретение
Номер охранного документа: 0002477881
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3eb5

Способ мониторинга информационной безопасности автоматизированных систем

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении своевременности обнаружения нарушений информационной безопасности. Такой результат достигается тем, что задают множество из S≥2 контролируемых параметров, характеризующих психофизиологическое...
Тип: Изобретение
Номер охранного документа: 0002481620
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ebe

Способ моделирования разнородных сетей связи

Изобретение относится к средствам моделирования сетей связи. Техническим результатом является расширение функциональных возможностей за счет расчета вероятности наличия маршрута между абонентами. В способе задают исходные данные, формируют в каждом из статистических экспериментов граф, в...
Тип: Изобретение
Номер охранного документа: 0002481629
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4203

Трехэлектродный датчик

Изобретение относится к области измерения электрофизических параметров жидкостей, а именно измерения электропроводности, диэлектрической проницаемости и тангенса угла потерь жидкостей, преимущественно электролитов в связи с изучением и контролем их состава и строения. Трехэлектродный датчик,...
Тип: Изобретение
Номер охранного документа: 0002482469
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.456b

Способ защиты информационно-вычислительных сетей от компьютерных атак

Изобретение относится к электросвязи и может быть использовано в системах защиты от компьютерных атак путем их оперативного выявления и блокирования в информационно-вычислительных сетях (ИВС). Техническим результатом является повышение достоверности обнаружения компьютерных атак на ИВС. Способ...
Тип: Изобретение
Номер охранного документа: 0002483348
Дата охранного документа: 27.05.2013
20.07.2013
№216.012.581d

Способ моделирования сетей связи

Изобретение относится к области моделирования. Техническим результатом является более полное соответствие моделируемой процедуры реализации условий функционирования моделируемой сети связи. Формируют исходный граф исследуемой сети, задают совокупности из W возможных видов угроз безопасности, Z...
Тип: Изобретение
Номер охранного документа: 0002488165
Дата охранного документа: 20.07.2013
Показаны записи 1-10 из 98.
20.03.2013
№216.012.303a

Способ обеспечения защищенности автоматизированной системы

Изобретение относится к области электросвязи и вычислительной техники, а именно к способу защиты автоматизированных систем. Способ обеспечения защищенности автоматизированной системы, заключающийся в том, что задают параметры N≥2, характеризующие воздействие мультимедийного потока, параметры...
Тип: Изобретение
Номер охранного документа: 0002477881
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3eb5

Способ мониторинга информационной безопасности автоматизированных систем

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении своевременности обнаружения нарушений информационной безопасности. Такой результат достигается тем, что задают множество из S≥2 контролируемых параметров, характеризующих психофизиологическое...
Тип: Изобретение
Номер охранного документа: 0002481620
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3ebe

Способ моделирования разнородных сетей связи

Изобретение относится к средствам моделирования сетей связи. Техническим результатом является расширение функциональных возможностей за счет расчета вероятности наличия маршрута между абонентами. В способе задают исходные данные, формируют в каждом из статистических экспериментов граф, в...
Тип: Изобретение
Номер охранного документа: 0002481629
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4203

Трехэлектродный датчик

Изобретение относится к области измерения электрофизических параметров жидкостей, а именно измерения электропроводности, диэлектрической проницаемости и тангенса угла потерь жидкостей, преимущественно электролитов в связи с изучением и контролем их состава и строения. Трехэлектродный датчик,...
Тип: Изобретение
Номер охранного документа: 0002482469
Дата охранного документа: 20.05.2013
27.07.2013
№216.012.587b

Способ производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Способ заключается в том, что замешивают тесто безопарным способом из пшеничной муки общего назначения, дрожжей прессованных, поваренной соли, сахара-песка, воды и рисового масла в количестве 4% от массы пшеничной муки общего назначения. Формуют...
Тип: Изобретение
Номер охранного документа: 0002488272
Дата охранного документа: 27.07.2013
10.01.2014
№216.012.94f6

Акустоэлектрический глушитель шума

Изобретение относится к устройствам, снижающим шум, возникающий от работающего двигателя, может быть использовано в прямоточных выхлопных системах транспортных средств, оснащенных двигателями внутреннего сгорания (ДВС). Сущность изобретения: акустоэлектрический глушитель шума содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002503828
Дата охранного документа: 10.01.2014
20.02.2014
№216.012.a297

Защитный акустоэлектрический экран для придорожного шумопоглощения

Изобретение относится к шумозащитным ограждениям, устанавливаемым вдоль автомобильных и железнодорожных магистралей, вокруг строительных площадок, промышленных объектов и других источников шума. Защитный акустоэлектрический экран для придорожного шумопоглощения включает корпус, образованный...
Тип: Изобретение
Номер охранного документа: 0002507338
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a344

Способ контроля качества (безопасности) растительных масел и расплавленных жиров

Способ контроля качества (безопасности) растительных масел и расплавленных жиров, который заключается в том, что измеряют удельную активную электропроводность растительного масла или расплавленного жира при различных частотах электромагнитных колебаний и разных температурах, при этом для...
Тип: Изобретение
Номер охранного документа: 0002507511
Дата охранного документа: 20.02.2014
27.05.2014
№216.012.cb1d

Способ контроля степени очистки по стадиям рафинации растительных масел

Изобретение относится к области диагностики состава органических и неорганических жидкостей электрофизическими методами, в частности к оперативным методам контроля степени очистки растительных масел по стадиям процесса очистки (рафинации). Способ контроля процесса рафинации растительных масел...
Тип: Изобретение
Номер охранного документа: 0002517763
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.e002

Способ диагностики интеллектуальной потенции обучаемого (группы обучаемых) и последующей коррекции обучающего воздействия

Изобретение относится к области психологии, а именно к педагогической психологии, и может быть использовано для получения объективных данных о ходе процесса обучения, усвоения материала, познавательной деятельности обучаемых во время проведения занятий. Предъявляют группе обучаемых обучающей...
Тип: Изобретение
Номер охранного документа: 0002523132
Дата охранного документа: 20.07.2014
+ добавить свой РИД