×
27.07.2015
216.013.6868

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРА РАЗМЕРОВ ВЗВЕШЕННЫХ НАНОЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области техники автоматизации измерений, при анализе взвешенных наночастиц. Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа и введении их в перенасыщенные пары низколетучего укрупняющего вещества. Затем осуществляют освещение потока частиц световым пучком и регистрацию параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока. Для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков. При этом пять пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую. Далее эти потоки проходят через шесть устройств конденсационного роста и затем поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров. Способ в отличие от известных позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц. Техническим результатом является снижение времени измерений и повышение их точности. 1 ил.
Основные результаты: Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введении их в перенасыщенные пары низколетучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока, отличающийся тем, что для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую, затем эти потоки проходят через шесть устройств конденсационного роста и далее поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.

Изобретение относится к аналитическим измерительным системам, связанным с определением микропримесей, в первую очередь аэрозольных и наночастиц, в различных газах и их смесях, в том числе в воздушной атмосфере. Оно может найти применение во многих областях науки и техники, в частности при решении различного рода экологических задач, в создании сверхчистых производственных помещений, при контроле дисперсной фазы для адресной доставки лекарственных средств в органы дыхания.

Известно устройство анализа изображений частиц (Пат. US 2007 0273878 A1, G01N 21/00 от 29.11.2007), содержащее: осветительный блок, блок для захвата изображения и блок обработки изображения. Работа устройства заключается в освещении частиц, захвате полученного изображения и обработке полученных изображений с помощью порогового устройства для анализа извлеченных частиц и получения их морфологических особенностей.

Недостаток данного устройства состоит в том, что оно не позволяет проводить измерения наночастиц.

Известен способ исследования микрообъектов (Пат. RU 2154815, G01N 15/02 от 20.05.1998), который состоит в том, что исследуемые микрообъекты облучают пучком излучения, максимальный линейный размер объема когерентности которого в зоне облучения микрообъектов не превышает 30% от среднего расстояния между частицами в пространстве. С помощью оптической системы формируют изображения исследуемых микрообъектов и после считывания измеряют их геометрические параметры на уровне сигнала, зависящем от когерентности освещения и апертурного угла оптической системы формирования изображения.

Недостаток данного способа состоит в том, что данным способом невозможно определить размеры частиц нанометрового диапазона.

В основе методов измерения концентрации дисперсного состава аэрозольных частиц наноразмеров лежит укрупнение частиц за счет их конденсационного роста в среде пересыщенного пара (например, водяного) и измерение концентрации и размеров выросших капель с помощью обычных оптико-электронных методов.

Процесс конденсации пара на взвешенных в газовой смеси частицах веществ (ядра конденсации) и образования тумана начинается три достижении определенного пересыщения:

S=(p/p0)-1,

где р0 - давление насыщенного пара над плоской поверхностью конденсата; p - давление пара над каплей. В состоянии термодинамического равновесия между каплей и газовой средой p определяют как давление шара в газовой смеси.

При достаточно больших пересыщениях связь радиуса капли r и действующего пересыщения S выражается уравнением Кельвина с поправкой Томсона на электрический заряд ядра:

где σ и ρж - поверхностное натяжение и плотность конденсата; k - постоянная Больцмана; Т - температура газа; m - масса молекулы пара; e - электрический заряд.

Пользуясь формулой (1), нетрудно оценить, какое пересыщение необходимо создать, чтобы капли выросли до граничного размера, который способен зафиксировать оптический прибор.

При достаточно больших пересыщениях (S>3) водяного пара в воздухе центрами конденсации могут быть легкие аэроионы (r<10-7 см, е=1,6·10-19 кл). Все ядра, начиная от r<0,1 мкм вплоть до размеров ионов, называют в литературе ядрами Айткена.

Частицы, проявляющиеся при малых пересыщениях S<0,1 в воздухе, называют облачными ядрами конденсации, т.е. ядрами, на которых образуются капли облаков и туманов.

Первая конструкция счетчиков ядер конденсации описана в 1888 г. Айткеном и затем усовершенствована Шольцем в 1932 г. В этих приборах выросшие в пересыщенном водяным паром воздухе капельки сосчитываются визуально после их седиментации на стеклянной подложке (Беляев С.П., Никифорова Н.К., Смирнов В.В. и др. "Оптико-электронные методы изучения аэрозолей". М.: Энергоиздат, 1981, с.102).

Недостатком первых конструкций счетчиков ядер конденсации является отсутствие автоматического контроля.

Известен способ анализа примесей в газах, основанный на образовании аэрозольных частиц на отдельных молекулах (А.С. 188132, G01N 15/00 от 23.06.1961). На первом этапе для укрупнения самых мелких ядер в газ вводят пересыщенный пар какого-либо весьма малолетучего вещества, например диоктилсебацината. На втором этапе, добавляя при комнатной температуре перенасыщенные пары более летучего вещества, например диизобутилфталата, превращают растущие ядра конденсации в частицы достаточного устойчивого монодисперсного аэрозоля, удобного для нефелометрических или ультрамикроскопических измерений.

Недостатки данного способа заключаются в его эксплуатационных неудобствах. В нем считалось обязательным последовательное воздействие пересыщенного пара сначала проявляющего вещества, потом укрупняющего. Соответственно требуются два однотипных устройства. В первом устройстве вспомогательный малый поток газа контактирует с нагретым веществом проявителя и смешивается с основным потоком газа комнатной температуры, содержащим ядра конденсации. Во втором устройстве другой вспомогательный малый поток контактирует с нагретым веществом укрупнителя и смешивается с основным потоком, поступающим из первого устройства с образованными в нем частицами ультрадисперсного аэрозоля укрупнителя.

Другой эксплуатационный недостаток способа заключается в том, что насыщенные пары во вспомогательных потоках, соприкасаясь с диафрагмой смесителей, частично конденсируются на ней и окисляются на воздухе. Окисленный конденсат представляет собой вязкое, а иногда твердое вещество, которое постепенно забивает отверстие диафрагмы, изменяя режим работы способа.

Для устранения указанных недостатков известны различные способы и устройства образования молекулярных ядер конденсации (МоЯК).

Известно устройство для создания дозированного пересыщения пара веществ в потоке газа (А.С. 1741105 G05D 11/00, B01F 3/02, B01F 15/04 от 15.06.1992), которое содержит соединенные с помощью металлической капиллярной трубки испарительную и смесительную части. В корпусе испарительной части имеется электронагреватель и гильза с носителем испаряемого вещества, предназначенные для насыщения малого потока газа паром вещества при повышенной температуре. Смесительная часть состоит из трубки с соплом для основного разбавляющего потока с ядрами конденсации.

Недостатком данного устройства является сложность конструкции и большие массогабаритные характеристики и энергопотребление соответствующей аппаратуры.

Известен способ определения малых примесей в газе (пат. 2253857 G01N 15/00 от 01.03.2004), который включает образование молекулярных ядер конденсации (МоЯК) в потоке газа из примесей или с их участием, испарение проявляющих и укрупняющих МоЯК веществ путем их дозированного нагрева в потоках газа, образование аэрозольных частиц и измерение их концентрации, определяющей концентрацию примесей. Нагретые потоки газа с испаренными веществами объединяют в общий поток, создают пересыщение смеси паров веществ и образуют аэрозольные частицы совместной конденсацией на МоЯК паров смеси проявляющих и укрупняющих веществ.

Недостаток данного способа заключается в применении в качестве нагревателя проволоки из золота, платины или их сплавов, а также высокое энергопотребление. Кроме этого данный способ не позволяет определять спектр размеров ядер конденсации.

Известен способ укрупнения ядер конденсации и устройство для его осуществления (Пат. 2061219, G01N 15/00 от 27.05.1996), в котором пересыщенный пар укрупняющего вещества получают путем пропускания потока с ядрами в зазор между двумя эквидистантными поверхностями с заданной разностью температур, одна из которых (имеющая более высокую температуру) покрыта укрупняющим веществом. Способ реализуется с помощью устройства, содержащего камеру для создания пересыщения, снабженную охладителем, внутри которой установлен испаритель с электронагревателем. Камера может быть выполнена, например, в форме трубки, а испаритель цилиндрической формы расположен по ее оси.

Недостатком способа является невозможность определять для измеряемых ядер конденсации (наночастиц) спектры их размеров.

Известен способ определения микроконцентрации карбонилов металлов в потоке воздуха (Пат. 2356029 G01N 15/06 от 20.05.2009), который включает превращение молекул карбонила в молекулярные ядра конденсации, последующее проявление и укрупнение ядер в пересыщенных парах проявляющего и укрупняющего детектирующих веществ в конденсационных устройствах и нефелометрическое измерение светорассеяния полученного аэрозоля. При этом превращение молекул карбонила в молекулярные ядра конденсации осуществляют путем пропускания анализируемого потока через нагретую часть трубки проявляющего конденсационного устройства с нанесенным на ее внутренние стенки проявляющим веществом. Проявление ядер осуществляют в пересыщенном паре проявляющего вещества при дальнейшем прохождении потока через охлажденную часть той же трубки.

Недостатком данного способа является невозможность определения размерного спектра измеряемых микроконцентраций.

Наиболее близким по технической сути к предлагаемому способу является способ измерения спектра размеров ядер конденсации аэрозольных частиц и устройство для его реализации (Пат. 2340885, G01N 15/02 от 26.10.2006), включающий пропускание газа (или смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введение их в пересыщенные пары низколетучего укрупняющего вещества, конденсацию паров на ядрах частиц с образованием аэрозоля, концентрацию которого определяют оптическим счетчиком. На этом способе основана также работа диффузионного аэрозольного спектрометра Модели 2702, выпускаемого ООО «АэроНаноТех» (г. Москва).

Недостаток данного способа и основанного на нем спектрометра состоит в том, что расчет спектра размеров частиц осуществляется косвенно с использованием гамма-распределения и решения сложной системы нелинейных алгебраических уравнений, так как анализ спектра размеров укрупненных аэрозольных частиц производится путем последовательного измерения проскоков частиц через пять диффузионных батарей сетчатого типа и канал без батарей (нулевой канал).

Технический результат, который может быть получен при осуществлении изобретения, состоит в снижении времени измерений и повышении их точности.

Этот результат достигается тем, что способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введении их в перенасыщенные пары низколетучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока. Для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую, далее эти потоки проходят через шесть устройств конденсационного роста и затем поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.

На фиг.1 представлена общая схема устройства для реализации способа.

Устройство содержит импульсный источник излучения 1, оптическую систему осветителя 2, оптическую систему формирования изображений микрообъектов, состоящую из объективов 3 и 8 и фокусирующих оптическое излучение в области счетного объема потока частиц 7, ПЗС-матрицы 9, аналого-цифрового преобразователя 10, ЭВМ 11. Также устройство содержит входное сопло с каналами подачи 4, диффузионные батареи сетчатого типа 5, устройства конденсационного роста 6 и вакуумный насос (воздуходувку) 12.

Оптическая система осветителя 2 включает систему линз, реализующих, например, любой из известных методов освещения микрообъектов (освещение по Келлеру, методы темного и светлого поля, критическое освещение и т.д.).

Устройство по способу работает следующим образом. Анализируемый поток воздуха или другого газа, содержащего аэрозольные частицы, через входное сопло с каналами подачи 4 пропускается через пять диффузионных батарей 5.1-5.5, представляющих собой ряд сеточек, пропускающих аэрозольные частицы выше определенного размера. Для того чтобы определить концентрацию частиц, прошедших через диффузионные батареи, их необходимо укрупнить до размера, при котором их можно регистрировать ПЗС-матрицей в счетном объеме 7. Это достигается конденсацией паров дибутилфталата на ядрах частиц с образованием аэрозоля в укрупняющем устройстве 6, состоящем из укрупняющих устройств для шести каналов 6.1-.6.6 и дополнительного укрупняющего устройства 6.0 в канале 6.1 для возможности укрупнения наночастиц молекулярного размера. Далее шесть укрупненных потоков частиц поступают в область контроля ПЗС-матрицы 9, формирование изображений на которую обеспечивает оптическая система, содержащая импульсный источник излучения 1, осветитель 2, объективы 3 и 8, фокусирующие оптическое излучение в области счетного объема потока частиц 7. С матрицы ПЗС изображение поступает в аналого-цифровой преобразователь 10 и далее в ЭВМ 11. ЭВМ осуществляет цифровую обработку полученных шести областей, характеризующих пять каналов прохождения отсортированных диффузионными батареями и напрямую (через нулевую батарею) укрупненных частиц с целью определения спектра размеров наночастиц. Также ЭВМ управляет устройством конденсационного роста 6 (6.0-6.6) и вакуумным насосом 12.

Таким образом, рассмотренный способ в отличие от известных позволяет проводить обработку на ЭВМ одновременно шести изображений укрупненных частиц, характеризующих разные размерные диапазоны наночастиц.

Способ определения спектра размеров взвешенных наночастиц состоит в пропускании газа (смеси газов), содержащего анализируемые частицы, через диффузионные батареи сетчатого типа, введении их в перенасыщенные пары низколетучего укрупняющего вещества, освещении потока частиц световым пучком и регистрации параметров световых сигналов, формируемых укрупненными частицами при их пролете через выделенную область потока, отличающийся тем, что для повышения точности определения спектра размеров основной поток разделяется на шесть параллельных потоков, пять из которых пропускаются через пять диффузионных батарей с различным проскоком, а один - напрямую, затем эти потоки проходят через шесть устройств конденсационного роста и далее поступают в поле зрения матрицы ПЗС и полученные шесть областей изображений укрупненных потоков частиц передаются в ЭВМ для анализа их спектра размеров.
СПОСОБ ОПРЕДЕЛЕНИЯ СПЕКТРА РАЗМЕРОВ ВЗВЕШЕННЫХ НАНОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 115.
13.01.2017
№217.015.8bfd

Rs-триггер

Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления и передачи цифровой информации. Технический результат: заключается в повышении быстродействия систем обработки...
Тип: Изобретение
Номер охранного документа: 0002604682
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c5d

Биполярно-полевой операционный усилитель на основе "перегнутого" каскода

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля. Биполярно-полевой операционный усилитель содержит входной дифференциальный каскад, общая истоковая цепь...
Тип: Изобретение
Номер охранного документа: 0002604684
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8da0

Конструкция теплозащитного пакета с внутренней кулисой

Предлагаемое техническое решение относится к швейной промышленности и может использоваться при изготовлении верхней одежды с несвязным утеплителем, обеспечивая заданный уровень качества готовых изделий. Конструкция теплозащитного пакета с внутренней кулисой содержит два слоя материала оболочки:...
Тип: Изобретение
Номер охранного документа: 0002604856
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8fae

Устройство искажения радиолокационного изображения

Изобретение относится к области радиоподавления радиолокационных станций (РЛС). Достигаемый технический результат - снижение погрешности воспроизведения линейно-частотно-модулированных (ЛЧМ) сигналов путем учета доплеровского смещения частоты принимаемого ЛЧМ сигнала, обусловленного взаимным...
Тип: Изобретение
Номер охранного документа: 0002605205
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b3bb

Дифференциальный операционный усилитель с малым напряжением питания

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и...
Тип: Изобретение
Номер охранного документа: 0002613842
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b473

Автоматизированная автобусная остановка

Изобретение относится к области регулирования дорожного движения. Автоматизированная автобусная остановка состоит из остановочной площадки для автобусов, переходно-скоростной полосы для торможения и разгона, посадочной площадки, площадки ожидания (павильон для пассажиров), тротуаров и...
Тип: Изобретение
Номер охранного документа: 0002614159
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b502

Планарная индуктивность

Изобретение относится к пассивной элементной базе устройств радиотехники и связи и может найти широкое применение в различных усилителях, смесителях и RLC-фильтрах ВЧ и СВЧ диапазонов, радиоприемниках и радиопередатчиках и т.п. Технический результат: увеличение численных значений L планарной...
Тип: Изобретение
Номер охранного документа: 0002614188
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b5e3

Способ оценки деформационных свойств ниточных соединений деталей швейных изделий

Изобретение относится к швейной промышленности и может использоваться при определении посадки и стягивания слоев сшиваемого материала при оценке продольной деформации ниточных соединений деталей швейных изделий. Для этого используют определение величины посадки и стягивания прямолинейного...
Тип: Изобретение
Номер охранного документа: 0002614727
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b9be

Операционный усилитель

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в повышении прецизионности операционного усилителя в условиях дестабилизирующих факторов. Операционный усилитель...
Тип: Изобретение
Номер охранного документа: 0002615066
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bfe5

Дифференциальный операционный усилитель

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада. В схему...
Тип: Изобретение
Номер охранного документа: 0002616573
Дата охранного документа: 17.04.2017
Показаны записи 101-110 из 113.
26.08.2017
№217.015.d5e2

Планарная индуктивность с расширенным частотным диапазоном

Изобретение относится к области радиотехники и связи и может быть использовано в СВЧ-устройствах усиления и преобразования аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, избирательных усилителях, смесителях, генераторах и др., реализуемых...
Тип: Изобретение
Номер охранного документа: 0002623100
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d7fe

Способ анализа взвешенных частиц

Изобретение относится к способам анализа. Способ состоит в том, что поток частиц освещают световым пучком и регистрируют изображение частиц, по которым и судят о размерах и формах частиц. Световой пучок после прохождения потока разворачивают по отношению к исходному пучку и вновь пропускают...
Тип: Изобретение
Номер охранного документа: 0002622494
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.e5a0

Оптико-электронное устройство контроля взвешенных частиц

Использование относится к области измерений, связанной с анализом взвешенных частиц. Устройство анализа взвешенных частиц включает источник лазерного излучения, системы объективов и зеркал, где световой пучок разворачивают равномерно под углом к исходному пучку и вновь пропускают через поток...
Тип: Изобретение
Номер охранного документа: 0002626750
Дата охранного документа: 31.07.2017
20.01.2018
№218.016.1a92

Способ сбора и подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых месторождений. Согласно способу сбора и подготовки...
Тип: Изобретение
Номер охранного документа: 0002636499
Дата охранного документа: 23.11.2017
10.05.2018
№218.016.47a7

Способ определения параметров взвешенных частиц

Использование: в технике измерений, при определении параметров взвешенных частиц. Способ определения параметров взвешенных частиц, сущность которого заключается в измерении перемещения частиц, находящихся в плоскости сечения, за фиксированный интервал времени в измерительной плоскости,...
Тип: Изобретение
Номер охранного документа: 0002650753
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4f02

Устройство определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652662
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f3a

Способ определения распределения взвешенных частиц по массе

Изобретение относится к технике измерений, в частности к оптическим методам контроля, и может использоваться в электронной и химической промышленности, в медицине, биологии, экологии, порошковой металлургии и других областях науки и техники, связанных с определением параметров взвешенных...
Тип: Изобретение
Номер охранного документа: 0002652654
Дата охранного документа: 28.04.2018
09.06.2018
№218.016.5ba5

Устройство определения параметров взвешенных частиц

Изобретение относится к области для определения параметров взвешенных частиц. Устройство определения параметров взвешенных частиц содержит воздуховод, лазерный излучатель, объектив, матрицу ПЗС для регистрации и обработки не менее двух изображений плоской области потока частиц, «вырезаемой»...
Тип: Изобретение
Номер охранного документа: 0002655728
Дата охранного документа: 29.05.2018
27.04.2019
№219.017.3cdf

Фотоэлектрический способ определения средней концентрации и среднего размера частиц пыли

Изобретение относится к измерительной технике. Фотоэлектрический способ определения среднего размера и средней концентрации частиц пыли включает преобразование импульсного напряжения в световой поток, зондирование области исследуемой среды световым пучком, разделение светового потока,...
Тип: Изобретение
Номер охранного документа: 0002686401
Дата охранного документа: 25.04.2019
20.06.2019
№219.017.8da7

Оптический пылемер

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания. Пылемер содержит источник света, два светоделительных зеркала, две диафрагмы, два фотоприемника,...
Тип: Изобретение
Номер охранного документа: 0002691978
Дата охранного документа: 19.06.2019
+ добавить свой РИД