×
27.07.2015
216.013.6860

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДЫХ ТЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения теплофизических характеристик твердых тел и позволяет измерять теплопроводность образцов твердых тел, являющихся малыми во всех трех измерениях. Систему, состоящую из исследуемого образца, закрепленного между двумя одинаковыми эталонными образцами, изготовленными из одного прозрачного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, помещают в интерферометр. При создании в системе стационарного одномерного теплового потока, направленного перпендикулярно плоскости контактов, интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца. Технический результат - повышение точности определения теплопроводности образцов малого размера. 1 ил.
Основные результаты: Способ определения теплопроводности твердых тел, в котором создают стационарный одномерный тепловой поток через систему, представляющую собой исследуемый образец, закрепленный между двумя одинаковыми эталонными образцами, изготовленными из одного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, при этом тепловой поток направляют перпендикулярно плоскости контактов, отличающийся тем, что эталонные образцы изготавливают из прозрачного материала, систему помещают в интерферометр, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца, при этом все образцы изготавливают так, чтобы в каждом эталонном образце можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра, а стороны этого параллелепипеда имеют длину не меньше 1 мм, и измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра.

Изобретение относится к способам определения теплофизических характеристик твердых тел, а именно теплопроводности.

Способ позволяет измерять теплопроводность твердых тел в диапазоне от 0,2 до 200 Вт/(м·К), выполненных в форме прямого цилиндра с характерным размером основания от 1 до 20 мм и высотой от 0,5 до 20 мм. Способ позволяет исследовать образцы малого размера, что широко востребовано в области исследования новых твердотельных материалов, технология получения которых не позволяет производить большие образцы. В частности, способ подходит для исследования оптических материалов, таких как оптические стекла, кристаллы и керамики. Существующие способы измерения теплопроводности малых образцов позволяют исследовать образцы, являющиеся экстремально малыми в одном или двух измерениях, такие как тонкие провода, тонкие ленты или тонкие пленки, и не позволяют изучать образцы, которые малы во всех трех измерениях. При этом данные методы являются довольно сложными с точки зрения математической модели, используемой для вычисления теплопроводности.

Наиболее близким к предлагаемому по технической сущности является взятый за прототип способ определения теплопроводности твердых материалов [американский стандарт ASTM E 1225, http://www.astm.org/Standards/E1225.htm], включающий создание стационарного одномерного теплового потока через систему, представляющую собой измеряемый образец, закрепленный между двумя эталонными образцами, изготовленными из одного материала (обычно металла) известной теплопроводности. Все образцы выполняют в форме прямых цилиндров с одинаковыми основаниями и скрепляют торцевыми сторонами. Тепловой поток направляют перпендикулярно плоскости контактов. Для определения продольного градиента температуры в эталонных образцах и скачка температуры между их основаниями, прилегающими к измеряемому образцу, вдоль эталонных образцов закрепляют термопары. Для уменьшения потерь тепла в атмосферу всю систему покрывают теплоизолирующей оболочкой. Теплопроводность измеряемого образца вычисляют из продольного градиента температуры в эталонных образцах, скачка температуры между гранями эталонных образцов, прилегающими к измеряемому образцу, теплопроводности эталонных образцов и высоты измеряемого образца.

Недостатком способа-прототипа является большой размер всей измерительной системы, который не может быть уменьшен из-за измерения температуры в эталонных образцах с помощью термопар. Термопары имеют конечный размер, для достижения нужной точности измерения их должно быть несколько на каждом эталонном образце (больше двух) и они должны быть разнесены на некоторое расстояние. Большой продольный размер системы вынуждает увеличивать ее поперечный размер, чтобы ослабить поток тепла в атмосферу. Это делает невозможным исследование образцов малого размера.

Задачей, на которую направлено изобретение, является создание способа, позволяющего измерять теплопроводность образцов твердых тел, являющихся малыми во всех трех измерениях.

Технический эффект достигается тем, что создают стационарный одномерный тепловой поток через систему, представляющую собой исследуемый образец, закрепленный между двумя одинаковыми эталонными образцами, изготовленными из одного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, при этом тепловой поток направляют перпендикулярно плоскости контактов.

Новым является то, что эталонные образцы изготавливают из прозрачного материала, систему помещают в интерферометр, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца, при этом все образцы изготавливают так, чтобы в каждом эталонном образце можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра, а стороны этого параллелепипеда имеют длину не меньше 1 мм, и измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра.

В частном случае реализации способа по п.2, если при измерении не выполняется условие малости скачка температуры на границах между исследуемым и эталонными образцами по отношению к скачку температуры на исследуемом образце, дополнительно проводят второе измерение с исследуемым образцом из того же материала и с тем же основанием, что и первый исследуемый образец, но имеющим другую высоту, и теплопроводность вычисляют из измеренных изменений профилей фазы светового пучка интерферометра, полученных для каждого исследуемого образца, высот каждого из исследуемых образцов и теплопроводности эталонных образцов.

Способ поясняется Фиг.1, на которой изображена система из приведенных в контакт эталонных и исследуемого образцов, а также нагреватель и радиатор, которые создают через систему стационарный одномерный тепловой поток.

Способ осуществляют следующим образом. Для проведения эксперимента используют систему, представленную на Фиг.1. Система представляет собой исследуемый образец 3, закрепленный между двумя одинаковыми эталонными образцами 4, изготовленными из одного прозрачного материала известной теплопроводности. Все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами. Эталонные образцы 4 имеют высоту от 1 до 3 мм. С одной стороны к системе прикрепляют нагреватель 1, с другой - радиатор с проточным охлаждением 2, которые в момент измерений создают в системе стационарный одномерный тепловой поток, направленный перпендикулярно плоскости контактов. Систему помещают в интерферометр и интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы 4, которое появляется при включении в системе стационарного теплового потока. При этом все образцы изготавливают так, чтобы в каждом из эталонных образцов 4 можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра и стороны этого параллелепипеда имеют длину не меньше 1 мм. Измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра. Из измеренного изменения профиля фазы светового пучка интерферометра (L) вычисляют градиент изменения профиля фазы пучка в эталонных образцах 4 (dL1/dx и dL2/dx) и скачок изменения профиля фазы пучка между обращенными друг к другу торцами эталонных образцов 4 (ΔL). Теплопроводность вычисляют по формуле:

,

где dL/dx - среднее арифметическое от dL1/dx и dL2/dx, κ0 - теплопроводность эталонных образцов 4, h - высота исследуемого образца 3. Данная формула получается из формулы, используемой для расчета в способе-прототипе:

,

где T - изменение температуры при включении в системе стационарного теплового потока, ΔT - скачок изменения температуры между обращенными друг к другу торцами эталонных образцов 4, dT/dx - среднее арифметическое градиентов изменения температуры в эталонных образцах 4. При этом используется линейная связь изменения профиля фазы светового пучка интерферометра, проходящего через эталонные образцы 4, с изменением распределения температуры в них:

,

где L0 - толщина одного из эталонных образцов 4 в том направлении, в котором направлен световой пучок интерферометра, dn/dT - температурное изменение показателя преломления одного из эталонных образцов 4, α - коэффициент теплового расширения одного из эталонных образцов 4.

Величина ΔL связана со скачком температуры на исследуемом образце 3 и со скачком температуры на двух границах 5 между исследуемым образцом 3 и эталонными образцами 4. Для измерения необходимо, чтобы скачок температуры на границах 5 был много меньше, чем на исследуемом образце 3.

На практике встречаются случаи, когда скачок температуры на границах 5 сравним по величине со скачком температуры на исследуемом образце 3. Это бывает, когда исследуемый образец имеет высокую теплопроводность или малую высоту, либо когда не удается создать хороший тепловой контакт между исследуемым образцом 3 и эталонными образцами 4 из-за особенности материала исследуемого образца 3. В этом случае реализуют способ по п.2: последовательно проводят два измерения по п.1 с исследуемыми образцами разной высоты (h1 и h2), из которых теплопроводность вычисляется по формуле:

,

где индексами 1 и 2 обозначаются величины, полученные при измерении образцов высотой h1 и h2 соответственно.

Мощность тепла, уходящего в атмосферу, оценивают из разности градиентов изменения профиля фазы пучка в эталонных образцах. Она должна быть много меньше мощности тепла, протекающей через систему. Если это условие не выполняется, систему покрывают теплоизолирующей оболочкой или помещают в вакуумную камеру.

Способ может быть применен для измерения при температурах от 10 К до 400 К помещением системы в вакуумную камеру и использованием системы охлаждения с возможностью стабилизации температуры на любом уровне из заданного диапазона. При этом в качестве хладагентов используют воду (от 280 К), жидкий азот (от 80 К) или жидкий гелий (от 10 К).

Способ определения теплопроводности твердых тел, в котором создают стационарный одномерный тепловой поток через систему, представляющую собой исследуемый образец, закрепленный между двумя одинаковыми эталонными образцами, изготовленными из одного материала известной теплопроводности, где все образцы выполнены в форме прямых цилиндров с одинаковыми основаниями и приведены в контакт торцевыми сторонами, при этом тепловой поток направляют перпендикулярно плоскости контактов, отличающийся тем, что эталонные образцы изготавливают из прозрачного материала, систему помещают в интерферометр, при создании в системе стационарного одномерного теплового потока интерференционным методом измеряют изменение профиля фазы светового пучка интерферометра, проходящего через эталонные образцы, а теплопроводность вычисляют из измеренного изменения профиля фазы светового пучка интерферометра, теплопроводности эталонных образцов и высоты исследуемого образца, при этом все образцы изготавливают так, чтобы в каждом эталонном образце можно было выделить область в виде прямоугольного параллелепипеда, у которого две противоположные грани являются частью боковой поверхности цилиндра, а стороны этого параллелепипеда имеют длину не меньше 1 мм, и измерение проводят именно в этих областях, направляя световой пучок интерферометра перпендикулярно тем граням областей, которые являются частью боковой поверхности цилиндра.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДЫХ ТЕЛ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 39.
20.04.2015
№216.013.4326

Импульсно-периодический лазер на неодимовом стекле для накачки мощных титан-сапфировых усилителей, работающий с частотой повторения импульсов не менее 0,02 гц

Импульсно-периодический лазер на неодимовом стекле для накачки мощных титан-сапфировых усилителей включает в себя задающий генератор, предусилитель, систему формирования пучка, изолятор Фарадея, кеплеров телескоп, поляризатор, основной двухпроходный усилитель на стержневых активных элементах из...
Тип: Изобретение
Номер охранного документа: 0002548688
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4531

Способ удаленного контроля формы поверхности и толщины покрытий, получаемых в процессе магнетронного вакуумного напыления, и устройство для его осуществления

Изобретение относится к области прецизионных оптических средств контроля формы поверхности объектов в процессе их технологической обработки или функционирования. Восстановление абсолютного трехмерного профиля всей поверхности осуществляется по серии данных относительных измерений фаз...
Тип: Изобретение
Номер охранного документа: 0002549211
Дата охранного документа: 20.04.2015
10.07.2015
№216.013.6158

Способ поиска и восстановления информации о событии по известному временному периоду и имеющимся базам данных

Изобретение относится к средствам анализа изображений географического района. Техническим результатом является повышение точности определения даты гидродинамического явления, зафиксированного на изображении. В способе с помощью графических зависимостей от времени выявляют период времени...
Тип: Изобретение
Номер охранного документа: 0002556462
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.660c

Способ наноструктурирования поверхности диэлектрической подложки с помощью ближнепольной литографии

Изобретение относится к способам лазерного наноструктурирования поверхности. Способ включает в себя формирование ближнепольной маски на поверхности диэлектрической подложки и облучение полученной структуры импульсом фемтосекундного лазера. Излучение лазера предварительно пропускают через...
Тип: Изобретение
Номер охранного документа: 0002557677
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.6e85

Изолятор фарадея на постоянных магнитах для лазеров большой мощности

Изобретение относится к оптике и представляет собой изолятор Фарадея на постоянных магнитах для лазеров большой мощности. Изолятор включает в себя последовательно расположенные на оптической оси поляризатор, магнитооптический элемент, установленный в магнитной системе, выполненной с...
Тип: Изобретение
Номер охранного документа: 0002559863
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7072

Способ получения оптически прозрачных монокристаллов граната

Изобретение относится к выращиванию монокристаллов тербий-скандий-алюминиевого граната и может быть использовано в магнитной микроэлектронике для сцинтилляторной и лазерной техники, в частности для создания изоляторов Фарадея для лазерного излучения высокой средней по времени мощности и высокой...
Тип: Изобретение
Номер охранного документа: 0002560356
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70c4

Способ соединения деталей оптического элемента из кристаллов гранатов

Изобретение относится к области изготовления оптического элемента путем соединения нескольких кристаллов гранатов. Такие композитные оптические элементы широко применяются в лазерах и других оптических устройствах. Способ включает полировку соединяемых поверхностей деталей, их совмещение и...
Тип: Изобретение
Номер охранного документа: 0002560438
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.7a67

Способ измерения характеристик волнения водной поверхности

Предлагается способ определения высоты значительного волнения и оценки средней дисперсии наклонов крупномасштабного, по сравнению с длиной волны акустического излучения, волнения с помощью акустической системы, включающей импульсный акустический излучатель с одной приемо-передающей антенной с...
Тип: Изобретение
Номер охранного документа: 0002562924
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.9230

Фазоконтрастное устройство получения инвертированного по яркости изображения непрозрачных объектов

Изобретение относится к фазоконтрастному устройство для осуществления инверсии по яркости изображения непрозрачных объектов - получение позитива из негатива и наоборот. Фазоконтрастное устройство содержит одномодовый лазер, по крайней мере, один объектив и фильтр Цернике, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002569040
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92b6

Способ определения тепловой проводимости контактов твердых тел

Изобретение относится к области теплофизики и может быть использовано для определения тепловой проводимости контактов между прозрачными образцами или между прозрачным и высокотеплопроводным образцами. Систему, состоящую из двух прозрачных образцов либо двух прозрачных и закрепленного между...
Тип: Изобретение
Номер охранного документа: 0002569176
Дата охранного документа: 20.11.2015
Показаны записи 11-20 из 47.
10.01.2015
№216.013.1ad4

Способ определения состояния кубита

Изобретение относится к компьютерным системам, в частности к квантовым компьютерам и оптическим логическим элементам, и может быть использовано для полного определения состояния кубита. Техническим результатом является повышение точности измерений, сокращение времени измерения. Способ,...
Тип: Изобретение
Номер охранного документа: 0002538296
Дата охранного документа: 10.01.2015
20.04.2015
№216.013.4326

Импульсно-периодический лазер на неодимовом стекле для накачки мощных титан-сапфировых усилителей, работающий с частотой повторения импульсов не менее 0,02 гц

Импульсно-периодический лазер на неодимовом стекле для накачки мощных титан-сапфировых усилителей включает в себя задающий генератор, предусилитель, систему формирования пучка, изолятор Фарадея, кеплеров телескоп, поляризатор, основной двухпроходный усилитель на стержневых активных элементах из...
Тип: Изобретение
Номер охранного документа: 0002548688
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4531

Способ удаленного контроля формы поверхности и толщины покрытий, получаемых в процессе магнетронного вакуумного напыления, и устройство для его осуществления

Изобретение относится к области прецизионных оптических средств контроля формы поверхности объектов в процессе их технологической обработки или функционирования. Восстановление абсолютного трехмерного профиля всей поверхности осуществляется по серии данных относительных измерений фаз...
Тип: Изобретение
Номер охранного документа: 0002549211
Дата охранного документа: 20.04.2015
10.07.2015
№216.013.6158

Способ поиска и восстановления информации о событии по известному временному периоду и имеющимся базам данных

Изобретение относится к средствам анализа изображений географического района. Техническим результатом является повышение точности определения даты гидродинамического явления, зафиксированного на изображении. В способе с помощью графических зависимостей от времени выявляют период времени...
Тип: Изобретение
Номер охранного документа: 0002556462
Дата охранного документа: 10.07.2015
27.07.2015
№216.013.660c

Способ наноструктурирования поверхности диэлектрической подложки с помощью ближнепольной литографии

Изобретение относится к способам лазерного наноструктурирования поверхности. Способ включает в себя формирование ближнепольной маски на поверхности диэлектрической подложки и облучение полученной структуры импульсом фемтосекундного лазера. Излучение лазера предварительно пропускают через...
Тип: Изобретение
Номер охранного документа: 0002557677
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.6e85

Изолятор фарадея на постоянных магнитах для лазеров большой мощности

Изобретение относится к оптике и представляет собой изолятор Фарадея на постоянных магнитах для лазеров большой мощности. Изолятор включает в себя последовательно расположенные на оптической оси поляризатор, магнитооптический элемент, установленный в магнитной системе, выполненной с...
Тип: Изобретение
Номер охранного документа: 0002559863
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7072

Способ получения оптически прозрачных монокристаллов граната

Изобретение относится к выращиванию монокристаллов тербий-скандий-алюминиевого граната и может быть использовано в магнитной микроэлектронике для сцинтилляторной и лазерной техники, в частности для создания изоляторов Фарадея для лазерного излучения высокой средней по времени мощности и высокой...
Тип: Изобретение
Номер охранного документа: 0002560356
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70c4

Способ соединения деталей оптического элемента из кристаллов гранатов

Изобретение относится к области изготовления оптического элемента путем соединения нескольких кристаллов гранатов. Такие композитные оптические элементы широко применяются в лазерах и других оптических устройствах. Способ включает полировку соединяемых поверхностей деталей, их совмещение и...
Тип: Изобретение
Номер охранного документа: 0002560438
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.7a67

Способ измерения характеристик волнения водной поверхности

Предлагается способ определения высоты значительного волнения и оценки средней дисперсии наклонов крупномасштабного, по сравнению с длиной волны акустического излучения, волнения с помощью акустической системы, включающей импульсный акустический излучатель с одной приемо-передающей антенной с...
Тип: Изобретение
Номер охранного документа: 0002562924
Дата охранного документа: 10.09.2015
20.11.2015
№216.013.9230

Фазоконтрастное устройство получения инвертированного по яркости изображения непрозрачных объектов

Изобретение относится к фазоконтрастному устройство для осуществления инверсии по яркости изображения непрозрачных объектов - получение позитива из негатива и наоборот. Фазоконтрастное устройство содержит одномодовый лазер, по крайней мере, один объектив и фильтр Цернике, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002569040
Дата охранного документа: 20.11.2015
+ добавить свой РИД