×
20.07.2015
216.013.64e0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА

Вид РИД

Изобретение

№ охранного документа
0002557371
Дата охранного документа
20.07.2015
Аннотация: Изобретение относится к области полевой электроразведки и служит для оценки размеров камеры в соляном куполе, образующейся при строительстве подземных хранилищ газа (ПХГ). Технический результат: возможность определения размеров соляной камеры в соляном куполе с использованием метода заряда. Сущность: способ включает себя использование двух питающих электродов. Первый электрод погружают в рабочую скважину. Второй электрод размещают на поверхности земли в «бесконечности». С помощью двух измерительных электродов, размещаемых на поверхности земли в окрестности первого питающего электрода, измеряют разность потенциалов в окрестности первого питающего электрода, опускают первый питающий электрод на подошву соляной камеры и после пуска тока проводят измерение потенциалов с помощью передвигаемого измерительного электрода не менее чем по четырем прямолинейным профилям, равномерно распределенным по азимуту, с длиной каждого профиля 50 м, с шагом по профилю не более 2 м. Фиксируют резкое увеличение измеренного потенциала при переходе границы неоднородных сред, составляющих стенки соляной камеры. Длину проекции камеры на дневную поверхность по соответствующему профилю определяют по точкам отрыва потенциала (резкие увеличения), измеренного по этому профилю и характеризующего границу перехода неоднородных сред в соляном куполе. 6 ил.
Основные результаты: Способ определения размеров выработки соляных куполов при строительстве подземных хранилищ газа, включающий в себя использование двух питающих электродов, первого погружаемого в PC питающего электрода и второго питающего электрода, размещаемого на поверхности земли на достаточном удалении («бесконечности»), и двух измерительных электродов, один из которых неподвижен, размещаемых на поверхности земли в окрестности первого питающего электрода, с помощью которых измеряют разность потенциалов в окрестности первого питающего электрода, отличающийся тем, что опускают первый питающий электрод на подошву соляной камеры и после пуска тока проводят измерение потенциалов с помощью передвигаемого измерительного электрода не менее чем по четырем прямолинейным профилям, равномерно распределенным по азимуту, с длиной каждого профиля 50 м, с шагом по профилю не более 2 м, при этом фиксируют резкое увеличение измеренного потенциала при переходе границы неоднородных сред, составляющих стенки соляной камеры, образующейся вследствие растворения соли водой в соляном куполе, и насыщенного раствора соли (рапы), в результате измерений длину проекции камеры на дневную поверхность по соответствующему профилю определяют по точкам отрыва потенциала (резкие увеличения), измеренного по этому профилю и характеризующего границу перехода неоднородных сред в соляном куполе.

Изобретение относится к области полевой электроразведки и служит для оценки размеров камеры в соляном куполе, образующейся при строительстве подземных хранилищ газа (ПХГ), вследствие растворения соли водой, подаваемой по насосно-компрессорным трубам (НКТ) в камеру.

При строительстве ПХГ в соляном куполе через специальную рабочую скважину (PC) обеспечивается непрерывная подача воды на стенки соляного купола, в силу чего происходит его растворение с созданием насыщенного раствора соли (рапы).

В настоящее время для локации формы камеры, на основании которой определяются ее размеры, применяется акустический метод, требующий извлечения НКТ из рабочей скважины. Такой способ локации в принципе не способен обеспечить оперативной оценки размеров камеры.

В заявляемом способе предусматривается, что локация камеры осуществляется методом заряженного тела (методом заряда в модификации метода заряженного тела) (МЗТ) (Инструкция по электроразведке. - Л.: Недра, 1984, с.19-26).

Известно, что метод заряда применяется в гидрогеологии для определения направления и скорости движения подземных вод в модификации изолиний измеренных потенциалов. В соответствии с методическими рекомендациями питающий электрод погружают в скважину до середины водоносного пласта, второе заземление относят на расстояние, примерно в 10-15 раз превышающее глубину погружения токового электрода, а в качестве электролита применяют поваренную соль.

Обработка результатов заключается в построении изолиний потенциала, определение максимальных смещений изолиний, направлений их смещений, а также построении графиков для определения скорости в соответствии с методикой (Инструкция по электроразведке. - Л.: Недра, 1984, с.19-26).

Известная методика предназначена для определения направления и действительной скорости движения подземных вод и не предназначена для расчета размеров подземных соляных камер, заполненных соляным раствором, значение УЭС которых изменяется от высокого, равного 107 Ом·м, до величины порядка 0,01 Ом·м с увеличением размеров камеры вследствие ее заполнения соляным раствором.

При этом камеры имеют границы перехода от жидкости к стенкам купола (неоднородность среды), при измерении потенциала которых происходит «отрыв» потенциала - резкое увеличение УЭС.

Известен способ электропрофилирования поверхностных неоднородностей методом заряда, основанный на регистрации искажения поля заряда при переходе границы этих неоднородностей (Инструкция по электроразведке. - Л.: Недра, 1984, с.24).

Известная методика предназначена для определения поверхностных неоднородностей на плоскости и не обеспечивает определение пространственных размеров подземных соляных камер.

Известен способ электроразведки, включающий в себя использование двух питающих электродов, первого погружаемого в землю питающего электрода и второго питающего электрода, размещаемого на поверхности земли на достаточном удалении (практической бесконечности), и двух измерительных электродов, размещаемых на поверхности земли в окрестности первого питающего электрода, с помощью которых измеряют разность потенциалов в окрестности первого питающего электрода, при этом питающий электрод выполняют в виде стержня, который погружают в землю, а измерительные электроды при этом сохраняют неподвижными, по мере погружения стержня измеряют отношение разности потенциалов на измерительных электродах и тока в цепи питающих электродов, и глубину погружения стержня, по отношению разности потенциалов на измерительных электродах и тока в первом питающем электроде определяют с учетом глубины погружения стержня удельное сопротивление пород, пересекаемых стержнем (Патент РФ №2466430, приор. 12.01.2011, опубл. 10.11.2012).

Способ осуществляется следующим образом. В качестве первого питающего электрода используют штангу пенетратора, представляющую собой составной стержень, при этом она играет роль питающего электрода в трехэлектродной установке, аналогичной установке для проведения наземного электропрофилирования с трехэлектродной установкой. Измерительные электроды располагаются на расстоянии, сопоставимом с глубиной погружения пенетратора. По мере погружения составного стержня он будет пересекать породу с различным удельным электрическим сопротивлением, что скажется на величине разности потенциалов между измерительными электродами. В итоге кривая зависимости отношения разности потенциалов на измерительных электродах от глубины погружения составного стержня будет нести информацию об удельной электрической проводимости пересеченных составным стержнем пород. При этом отсутствует влияние эквивалентности, то есть возможна однозначная интерпретация данных измерений, так как в отличие от традиционных наземных методов электроразведки существует дополнительная независимо измеряемая величина - глубина погружения стержня.

Таким образом, известный способ, используя метод наземного электропрофилирования с трехэлектродной установкой, решает задачу измерения удельной электрической проводимости пересеченных составным стержнем пород по глубине прохождения стержня в скважине.

Применить известный способ к решению задачи определения размеров соляной камеры не представляется возможным, так как он предусматривает получать информацию по вертикальной составляющей пересекаемых пород и не обеспечивает определение пространственных размеров подземных соляных камер.

Задачей заявляемого способа является расширение области применения методов электроразведки с использованием метода заряда путем применения его для расчета размеров подземной соляной камеры в соляном куполе, образующейся при строительстве подземных хранилищ газа (ПХГ), вследствие растворения соли водой, подаваемой по насосно-компрессорным трубам (НКТ) в камеру, без подъема их на поверхность, благодаря чему повышается оперативность и снижается трудоемкость исследований.

Указанная задача достигается тем, что в способе определения размеров выработки соляных куполов при строительстве подземных хранилищ газа, включающем в себя использование двух питающих электродов, первого погружаемого в PC питающего (токовый) электрода и второго питающего электрода, размещаемого на поверхности земли на достаточном удалении («бесконечности»), и двух измерительных электродов, размещаемых на поверхности земли в окрестности первого питающего электрода, с помощью которых измеряют разность потенциалов в окрестности первого питающего электрода, в отличие от прототипа опускают первый токовый электрод на подошву соляной камеры и после пуска тока проводят измерение потенциалов с помощью передвигаемого измерительного электрода не менее чем по четырем прямолинейным профилям, равномерно распределенным по азимуту, с длиной каждого профиля 50 м, с шагом по профилю не более 2 м, при этом фиксируют резкое увеличение измеренного потенциала при переходе границы неоднородных сред, составляющих стенки соляной камеры, образующейся вследствие растворения соли водой в соляном куполе, и насыщенного раствора соли (рапы). Длину проекции камеры на дневную поверхность по соответствующему профилю определяют по точкам отрыва потенциала (резкие увеличения), измеренного по этому профилю и характеризующего границу перехода неоднородных сред в соляном куполе.

На фиг.1-4 показано распределение потенциалов по четырем профилям по результатам электрометрии в PC;

На фиг.5 представлена схема расположения профилей на дневной поверхности над соляной камерой.

На фиг.6 показан контур проекции соляной камеры на дневную поверхность, полученный согласно предлагаемому способу.

Согласно предлагаемому способу первый токовый электрод 1 опускают на дно соляной камеры 2. На поверхности земли второй питающий электрод 3 размещен на достаточном удалении («бесконечности»). Один измерительный электрод 4 размещают стационарно в окрестностях токового электрода 1. Токовый электрод 1 спущен в PC 6. Второй измерительный электрод 5 перемещают по поверхности по профилям 7 (фиг.5).

Стенки соляной камеры 8 образуют переход границ неоднородных сред. Поз.9 - НКТ в PC 6.

После спуска электрода 1 в PC 6 по нему пропускают ток и на поверхности вторым измерительным электродом 5 проводят измерения потенциалов электрического поля по методу заряда, не менее чем по 4-м прямолинейным профилям 7, равномерно распределенным по азимуту, с длиной каждого профиля 50 м, с шагом по профилю не более 2 м. При этом фиксируют резкие увеличения измеренных потенциалов при переходе границы неоднородных сред, составляющих стенки соляной камеры 8, образующейся вследствие растворения соли водой, подаваемой по НКТ 9 в PC 6 6 в соляном куполе, и насыщенного раствора соли (рапы) (фиг.1-4).

Длину проекции камеры на дневную поверхность по соответствующему профилю определяют по точкам отрыва (резкое увеличение) потенциала, измеренного по этому профилю (фиг.6).

При спуске на дно соляной камеры (на забой PC) токового электрода 1 с отнесением заземленного электрода 3 на поверхности земли в «бесконечность» и включении тока, вся область соляной камеры окажется заряженной и приобретет аномально низкий потенциал U, отражающий практически эквипотенциальный характер распределения по объему камеры (фиг.1-4). При переходе границы неоднородных сред, составляющих стенки соляной камеры 8, образующейся вследствие растворения соли водой, подаваемой по НКТ 9 в PC 6 в соляном куполе 2, и насыщенного раствора соли (рапы), будут наблюдаться значения аномального потенциала Пан. Как указывалось ранее, при применяемой технологии строительства ПХГ в соляном куполе, имеющем высокое удельное электрическое сопротивление (УЭС), равное 107 Ом·м, возникает заполненная соляным раствором камера, УЭС которой уменьшается до величины порядка 0,01 Ом·м с увеличением размеров камеры.

При этом на поверхности Земли при переходе границ от соляного раствора к стенкам камеры будет наблюдаться область аномального потенциала U, форма которой будет определяться горизонтальной проекцией камеры на поверхность Земли (фиг.6), где ПР-1, Пр-2, Пр-3, Пр-4 точки на профилях, обозначающие границы контура соляной камеры, где по результатам измерений наблюдались аномальные значения потенциала Uан.

Пример практической реализации способа приведен на фиг.1-4.

Способ осуществляется с применением электроразведочной аппаратуры типа СВП-74 (Инструкция по электроразведке. - Л.: Недра, 1984, с.20).

Аппаратура присоединяется каротажным кабелем к токовому электроду 1, спускаемому в PC соляного купола и обеспечивает весь комплекс измерений, проводимых с помощью стандартного набора питающих и измерительных электродов.

На фиг.1-4 показано, что измеренные аномальные значения потенциалов Uан по четырем профилям наблюдались на расстояниях по длине профилей: 36 м, 8 м, 40 м, 8 м, точки которых на контуре проекции камеры на дневную поверхность обозначили границы соляного купола.

Способ определения размеров выработки соляных куполов при строительстве подземных хранилищ газа, включающий в себя использование двух питающих электродов, первого погружаемого в PC питающего электрода и второго питающего электрода, размещаемого на поверхности земли на достаточном удалении («бесконечности»), и двух измерительных электродов, один из которых неподвижен, размещаемых на поверхности земли в окрестности первого питающего электрода, с помощью которых измеряют разность потенциалов в окрестности первого питающего электрода, отличающийся тем, что опускают первый питающий электрод на подошву соляной камеры и после пуска тока проводят измерение потенциалов с помощью передвигаемого измерительного электрода не менее чем по четырем прямолинейным профилям, равномерно распределенным по азимуту, с длиной каждого профиля 50 м, с шагом по профилю не более 2 м, при этом фиксируют резкое увеличение измеренного потенциала при переходе границы неоднородных сред, составляющих стенки соляной камеры, образующейся вследствие растворения соли водой в соляном куполе, и насыщенного раствора соли (рапы), в результате измерений длину проекции камеры на дневную поверхность по соответствующему профилю определяют по точкам отрыва потенциала (резкие увеличения), измеренного по этому профилю и характеризующего границу перехода неоднородных сред в соляном куполе.
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ВЫРАБОТКИ СОЛЯНЫХ КУПОЛОВ ПРИ СТРОИТЕЛЬСТВЕ ПОДЗЕМНЫХ ХРАНИЛИЩ ГАЗА
Источник поступления информации: Роспатент

Показаны записи 11-17 из 17.
10.04.2019
№219.016.ffca

Способ разрушения парафиногидратных и парафиносмолистых отложений

Изобретение относится к нефтегазовой промышленности, а именно к эксплуатации нефтедобывающих скважин, продуктопроводов и газопроводов различного (промыслового и т.п.) назначения. Обеспечивает сокращение трудо- и энергозатрат на очистку труб от парафиногидратных и парафиносмолистых отложений, по...
Тип: Изобретение
Номер охранного документа: 0002289678
Дата охранного документа: 20.12.2006
10.04.2019
№219.017.006d

Датчик осевых нагрузок

Область применения: изобретение относится к технике геофизических исследований скважин и предназначено для контроля принудительного движения скважинных приборов по стволу горизонтальных участков скважин, в частности, с использованием колтюбинговых установок. Сущность изобретения: датчик осевых...
Тип: Изобретение
Номер охранного документа: 0002295740
Дата охранного документа: 20.03.2007
10.04.2019
№219.017.04fe

Устройство для центрирования скважинных приборов

Изобретение относится к геофизическим исследованиям скважин приборами на кабеле и может быть использовано в комплексной аппаратуре. Техническим результатом является повышение надежности и упрощения конструкции, повышение качества центрирования приборов в скважине и расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002305180
Дата охранного документа: 27.08.2007
10.04.2019
№219.017.0522

Вибрационный плотномер

Изобретение относится к области промысловой геофизики и предназначено для исследования скважинной жидкости. Устройство состоит из корпуса 1 с окнами 2, через которые поступает скважинная жидкость на механический резонатор 3, выполненный в виде круглого стержня, укрепленного пластиной 4 в...
Тип: Изобретение
Номер охранного документа: 0002307336
Дата охранного документа: 27.09.2007
19.04.2019
№219.017.2c02

Скважинный индукционный резистивиметр

Изобретение относится к геофизическим исследованиям скважин и может быть использовано для измерения удельного электрического сопротивления скважинной жидкости. Техническим результатом является повышение надежности измерений, а также упрощение процесса сборки-разборки скважинного индукционного...
Тип: Изобретение
Номер охранного документа: 0002261992
Дата охранного документа: 10.10.2005
19.04.2019
№219.017.3020

Скважинный датчик нагрузок

Изобретение относится к технике геофизических исследований скважин и предназначено для контроля принудительного движения приборов по стволу горизонтальных скважин, в частности, при работах с колтюбинговыми установками. Техническим результатом является повышение надежности конструкции и...
Тип: Изобретение
Номер охранного документа: 0002305179
Дата охранного документа: 27.08.2007
19.04.2019
№219.017.303d

Индикатор профиля фазы среды в горизонтальных и наклонных скважинах и его емкостный датчик

Изобретение относится к области промысловой геофизики и предназначено для идентификации флюидной фазы в горизонтальных и наклонных скважинах. Техническим результатом изобретения является повышение чувствительности и точности измерения диэлектрической проницаемости среды. Индикатор содержит...
Тип: Изобретение
Номер охранного документа: 0002307247
Дата охранного документа: 27.09.2007
Показаны записи 11-19 из 19.
01.03.2019
№219.016.cfc1

Способ восстановления герметичности заколонного пространства скважины газовой залежи или залежи, содержащей в своей продукции природный газ

Способ восстановления герметичности заколонного пространства скважины газовой залежи или залежи, содержащей в своей продукции природный газ, относится к нефтегазодобывающей промышленности и может быть использован при реконструкции, ремонте, консервации и ликвидации скважин с негерметичным по...
Тип: Изобретение
Номер охранного документа: 0002431033
Дата охранного документа: 10.10.2011
10.04.2019
№219.016.ffa5

Способ и установка для воздействия на призабойную зону пласта в процессе добычи нефти

Изобретение относится к области нефтяной промышленности, в частности к интенсификации добычи нефти путем воздействия на пласт. Обеспечивает повышение эффективности воздействия на пласт и его нефтеотдачи за счет увеличения притока нефти при виброакустическом и термическом воздействии, а также...
Тип: Изобретение
Номер охранного документа: 0002267601
Дата охранного документа: 10.01.2006
10.04.2019
№219.016.ffca

Способ разрушения парафиногидратных и парафиносмолистых отложений

Изобретение относится к нефтегазовой промышленности, а именно к эксплуатации нефтедобывающих скважин, продуктопроводов и газопроводов различного (промыслового и т.п.) назначения. Обеспечивает сокращение трудо- и энергозатрат на очистку труб от парафиногидратных и парафиносмолистых отложений, по...
Тип: Изобретение
Номер охранного документа: 0002289678
Дата охранного документа: 20.12.2006
10.04.2019
№219.017.04fe

Устройство для центрирования скважинных приборов

Изобретение относится к геофизическим исследованиям скважин приборами на кабеле и может быть использовано в комплексной аппаратуре. Техническим результатом является повышение надежности и упрощения конструкции, повышение качества центрирования приборов в скважине и расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002305180
Дата охранного документа: 27.08.2007
10.04.2019
№219.017.0522

Вибрационный плотномер

Изобретение относится к области промысловой геофизики и предназначено для исследования скважинной жидкости. Устройство состоит из корпуса 1 с окнами 2, через которые поступает скважинная жидкость на механический резонатор 3, выполненный в виде круглого стержня, укрепленного пластиной 4 в...
Тип: Изобретение
Номер охранного документа: 0002307336
Дата охранного документа: 27.09.2007
19.04.2019
№219.017.3020

Скважинный датчик нагрузок

Изобретение относится к технике геофизических исследований скважин и предназначено для контроля принудительного движения приборов по стволу горизонтальных скважин, в частности, при работах с колтюбинговыми установками. Техническим результатом является повышение надежности конструкции и...
Тип: Изобретение
Номер охранного документа: 0002305179
Дата охранного документа: 27.08.2007
19.04.2019
№219.017.303d

Индикатор профиля фазы среды в горизонтальных и наклонных скважинах и его емкостный датчик

Изобретение относится к области промысловой геофизики и предназначено для идентификации флюидной фазы в горизонтальных и наклонных скважинах. Техническим результатом изобретения является повышение чувствительности и точности измерения диэлектрической проницаемости среды. Индикатор содержит...
Тип: Изобретение
Номер охранного документа: 0002307247
Дата охранного документа: 27.09.2007
20.04.2019
№219.017.3537

Способ добычи урана и сопутствующих элементов по технологии подземного скважинного выщелачивания с плазменно-импульсным воздействием на гидросферу скважины.

Изобретение относится к горнодобывающей промышленности и предназначено для интенсификации добычи урана и других полезных ископаемых методом подземного выщелачивания. Способ осуществляют путем плазменно-импульсного воздействия (ПИВ) на гидросферу скважин. При этом способ включает закачку в...
Тип: Изобретение
Номер охранного документа: 0002685381
Дата охранного документа: 17.04.2019
27.04.2019
№219.017.3d16

Способ заканчивания и эксплуатации скважины подземного хранилища газа

Изобретение относится к газовой отрасли и может быть использовано при создании и эксплуатации подземных хранилищ газа (ГГХГ). Способ заканчивания и эксплуатации скважины ПХГ заключается в том, что осуществляют бурение до кровли продуктивного пласта, спуск и цементирование эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002686259
Дата охранного документа: 24.04.2019
+ добавить свой РИД