×
20.07.2015
216.013.6369

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТРОМБОРЕЗИСТЕНТНОГО ПОЛИМЕРНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к химии полимеров и медицине, а именно к получению тромборезистентных полимерных материалов, которые находят применение в медицинской промышленности для изготовления контактирующих с кровью изделий, например протезов кровеносных сосудов, деталей имплантируемых в живой организм искусственных органов, магистралей аппаратов искусственного кровообращения, емкостей для хранения и переливания крови. Тромборезистентный полимерный материал получают путем радиационной привитой сополимеризации на поверхность полимерного материала смеси гидрофильного мономера и ненасыщенного биологически активного соединения при массовом соотношении гидрофильный мономер:ненасыщенное биологически активное соединение 1:0,2-1:1. В качестве ненасыщенного биологически активного соединения используют смесь ацилированного хлорангидридом акриловой кислоты гирудина и ацилированного хлорангидридом акриловой кислоты овомукоида из белка утиных яиц при массовом соотношении 1:0,8-1:2. Технический результат: снижение количества адгезированных на поверхности материала тромбоцитов (относительный показатель адгезии тромбоцитов достигает значения 0.3-0.6) при сохранении пониженной способности к свертыванию крови на поверхности материала. 1 табл., 11 пр.
Основные результаты: Способ получения тромборезистентного полимерного материала путем радиационной привитой сополимеризации на поверхность полимерного материала смеси гидрофильного мономера и ненасыщенного биологически активного соединения, отличающийся тем, что в качестве ненасыщенного биологически активного соединения используют смесь ацилированного хлорангидридом акриловой кислоты гирудина и ацилированного хлорангидридом акриловой кислоты овомукоида из белка утиных яиц при их массовом соотношении 1:0,8-1:2 и массовом соотношении гидрофильный мономер:ненасыщенное биологически активное соединение 1:0,2-1:1.

Изобретение относится к области химии полимеров и медицины, а именно к способу получения тромборезистентных полимерных материалов, которые находят применение в медицинской промышленности для изготовления контактирующих с кровью изделий, например протезов кровеносных сосудов, деталей имплантируемых в живой организм искусственных органов, магистралей аппаратов искусственного кровообращения, емкостей для хранения и переливания крови и т.д.

Все применяемые в настоящее время в контакте с кровью материалы не являются истинно тромборезистентными. Контакт крови с любым чужеродным материалом приводит к ее свертыванию, что является естественной защитной реакцией организма. Положительные результаты имплантации некоторых полимерных материалов определяются либо относительно небольшими размерами имплантата (сердечные клапаны), либо тем, что в условиях интенсивного кровотока продукты тромбообразования постоянно смываются с поверхности полимера. В обоих случаях защитные системы организма в состоянии справиться с тромбоэмболией.

Известно, что процесс свертывания крови на поверхности полимеров включает несколько этапов [Смурова Е.В., Доброва Н.Б. Создание полимерных материалов с тромборезистентными свойствами, Химия и технология высокомолекулярных соединений, Москва, ВИНИТИ, 1976, т.10, с.30-60]. Первый этап - адсорбция белков, которая бывает благоприятной и неблагоприятной. Так, адсорбция сывороточного альбумина несколько ингибирует дальнейшие этапы свертывания крови на полимерной поверхности, а адсорбция фибриногена, напротив, ускоряет процесс свертывания крови. Второй этап - адгезия и агрегация тромбоцитов с их разрушением и выделением веществ, вызывающих дальнейшую агрегацию тромбоцитов. Третий этап - активация факторов свертывания крови и превращение фибриногена в нерастворимый фибрин, который вместе с застрявшими в нем форменными элементами крови и представляет тромб.

Наиболее распространенным подходом к повышению тромборезистентности полимеров является их модификация биологически активными соединениями, воздействующими на ту или иную стадию процесса тромбообразования [Биосовместимость, под ред. В.И. Севастьянова, Москва, ГУП «Информационный центр ВНИИгеосистем», 1999, с.295-305]. Обычно модификации подвергают поверхность уже готового полимерного изделия, поскольку при модификации исходного сырья в процессе его переработки в изделие происходит разрушение модифицирующих агентов с потерей ими биологической активности.

Наибольшее распространение в качестве биологически активного соединения получил антикоагулянт крови - гепарин. Гепарин - кислый мукополисахарид, состоящий из остатков глюкуроновой кислоты и глюкозамина, этерифицированных серной кислотой. Относительная молекулярная масса гепарина около 16000. В наибольших количествах он содержится в печени и легких, меньше - в скелетных мышцах, селезенке, мышце сердца. Добывается из легких крупного рогатого скота [Ульянов A.M., Ляпина Л.А. Современные данные о гепарине и его биохимических свойствах. Успехи современной биологии. 1977. Т.83. №1. С.69-85]. Гепарин является естественным противосвертывающим фактором. Механизм действия гепарина, в основном, заключается в нейтрализации свертывающей активности тромбина путем ускорения его реакции с антитромбином III [Зубаиров Д.М. Биохимия свертывания крови // М. Медицина. 1978. 259 С.]. Его применяют для профилактики и терапии различных тромбоэмболических заболеваний и их осложнений: для предотвращения или ограничения тромбообразования при остром инфаркте миокарда, при тромбозах и эмболиях магистральных вен и артерий, сосудов мозга, глаза, при операциях на сердце и кровеносных сосудах, для поддержания жидкого состояния крови в аппаратах искусственного кровообращения и аппаратуре для гемодиализа, а также для предотвращения свертывания крови при лабораторных исследованиях [Машковский А.Д. Лекарственные средства. М. Медицина. 1993. Т.2. С.79-81].

Впервые для повышения тромборезистентности полимерных материалов гепарин был использован в работе [V.L. Gott, J.D. Whiffen, R.S. Dutton, Heparin bonding on colloidal graphite surfaces // Science. 1963. V.142. №7. P.1297-4298]. На поверхность полимера сначала наносили слой графита, поверхность обрабатывали раствором бензалконийхлорида и затем раствором гепарина.

Недостатком этого способа является невысокая тромборезистентность полимера, обусловленная слабым связыванием гепарина с поверхностью полимера за счет ионного взаимодействия отрицательно заряженных групп гепарина с положительно заряженными группами бензалконийхлорида.

Известен способ получения тромборезистентных полимеров путем радиационной привитой сополимеризации на их поверхность хлорангидрида акриловой или метакриловой кислоты с последующей обработкой привитого сополимера раствором гепарина [Авторское свидетельство СССР №1120680, C08F 291/00, 1979].

Недостатком этого способа является низкая тромборезистентность полимера. Относительный показатель адгезии тромбоцитов (ОПАТ), равный отношению числа тромбоцитов на единице площади образца к числу тромбоцитов на единице площади стандарта - стекла, для исходного и модифицированного полимера имеет одинаковое значение.

В последние годы широкое распространение при лечении заболеваний или состояний, при которых гепаринотерапия оказывается недостаточно эффективной, например в остром периоде инфаркта миокарда, при нестабильной стенокардии и т.д., получил гирудин. Гирудин - полипептид, выделяемый из слюнных желез медицинских пиявок или получаемый рекомбинантным способом, состоит из 65 аминокислотных остатков и имеет молекулярную массу 12000. Основная биологическая функция гирудина заключается в предотвращении свертывания крови за счет нейтрализации свертывающей активности тромбина при образовании комплекса тромбин-гирудин [Markwardt F. Hirudin as an inhibitor of thrombin. // Methods in Enzymol. 1970. V.19. Р.924-932]. Гирудин является антикоагулянтом прямого действия. В отличие от гепарина он не вступает в реакцию с другими факторами системы свертывания крови и оказывает свое ингибирующее действие на тромбин без участия каких-либо находящихся в крови компонентов.

Известно использование иммобилизованного гирудина для повышения тромборезистентности полимерных материалов. Процесс проводят путем предварительного окисления полиэтилена хромовой кислотой с последующим связыванием гирудина с окисленной поверхностью с помощью водорастворимого карбодиимида [Lin J.С., Tsenq S.M. Surface characterization and platelet adhesion studies on polyethylene surface with hirudin immobilization. J. Mater. Sci. Mater. Med. V.12 (9). P.827-832. 2001].

Иммобилизация гирудина на поверхности полимера приводит к увеличению времени свертывания крови на поверхности, но не сопровождается уменьшением адгезии тромбоцитов.

Наиболее близким по технической сущности и достигаемым результатам является способ получения тромборезистентного полимерного материала путем радиационной привитой сополимеризации на поверхность полимерного материала смеси гепарина, ацилированного хлорангидридом акриловой или метакриловой кислоты (ненасыщенного биологически активного соединения), и гидрофильного мономера в молярном соотношении 10:1-1:4 [Авторское свидетельство СССР №1120679, C08F 291/00,1979]. В качестве гидрофильного мономера используют акриламид, N-винилпирролидон, гидроксиэтилметакрилат и т.д.

Необходимость использования гидрофильного мономера обусловлена тем, что в результате привитой сополимеризации на поверхности материала образуется слой гидрофильного полимера, в котором иммобилизован гепарин. При этом предотвращается контакт гепарина с обычно гидрофобной поверхностью исходного материала, что позволяет проявить иммобилизованному гепарину свою биологическую активность. В результате относительное время свертывания крови (ОВС), равное отношению времени свертывания крови на поверхности испытуемого материала к времени свертывания крови на поверхности стекла, увеличивается с 1,6 до 12,0.

Недостатком этого способа является повышенная адгезия тромбоцитов на поверхности полимерного материала. Так, ОПАТ в результате гепаринизации материала либо не изменяется, либо несколько повышается с 1,8 до 2,1. Причина этого заключается в том, что при контакте с кровью поверхность полимера обогащается фибриногеном, который способен повышать адгезию тромбоцитов за счет специфического взаимодействия с ферментами, локализованными на мембране тромбоцитов [Lee R.G., Adamson С, Kim S.W., Competitive adsorption of plasma proteins onto polymer surfaces. Throm. Res. V.4 (3). P.485-490. 1974].

Задачей изобретения является снижение количества адгезированных тромбоцитов на поверхности полимерного материала.

Техническим результатом, достигаемым при использовании изобретения, является снижение количества адгезированных тромбоцитов на поверхности полимерного материала при сохранении повышенного времени свертывания крови на поверхности.

Технический результат достигается тем, что в способе получения тромборезистентного полимерного материала путем радиационной привитой сополимеризации на поверхность полимерного материала смеси гидрофильного мономера и ненасыщенного биологически активного соединения в качестве ненасыщенного биологически активного соединения используют смесь ацилированного хлорангидридом акриловой кислоты гирудина и ацилированного хлорангидридом акриловой кислоты овомукоида из белка утиных яиц при их массовом соотношении 1:0,8-1:2 и массовом соотношении гидрофильный мономер: ненасыщенное биологически активное соединение 1:0,2-1:1.

Овомукоид из белка утиных яиц относится к классу гликопротеинов с молекулярной массой 31000 и является природным ингибитором протеолитических ферментов. Его используют в качестве антипротеиназного лекарственного препарата «Овомин» [Патент РФ №2053789, A61K 38/55, 1996], а также при получении биоспецифического гемосорбента «Овосорб» для удаления из крови активированных протеолитических ферментов [Авторское свидетельство СССР №1137388, G01N 33/50, 1985].

Привитую сополимеризацию проводят в вакууме под действием γ-излучения с суммарной дозой 1,5-5,0 Мрад при температуре 0-50°C. В зависимости от мощности дозы время облучения составляет 0,5-20 часов. Предпочтительно облучение проводят при комнатной температуре, мощности дозы 0,3-1,0 Мрад/ч и суммарной дозе 2,0-4,0 Мрад. Привитую сополимеризацию проводят путем облучения полимерного материала, погруженного в водный раствор смеси гидрофильного мономера, ацилированного хлорангидридом акриловой кислоты гирудина и ацилированного хлорангидридом акриловой кислоты овомукоида из белка утиных яиц.

Ацилирование овомукоида проводят путем растворения 1,0 г овомукоида в 100 мл бикарбонатного буфера при pH 8,0 и добавлением к раствору 0,1 мл хлорангидрида акриловой кислоты при перемешивании (4°C, 30 минут).

Аналогично проводят ацилирование гирудина.

Пример 1. В ампулу загружают полиэтиленовую пленку с площадью поверхности 10 см2 и 10 мл водного раствора, содержащего 0,1 г гирудина, ацилированного хлорангидридом акриловой кислоты, 0,1 г овомукоида, ацилированного хлорангидридом акриловой кислоты и 0,2 г гидрофильного мономера - акриламида. Ампулу вакуумируют до 10-3 мм рт.ст., запаивают и облучают Co60 при комнатной температуре, мощности дозы 0,4 Мрад/ч в течение 10 часов. Ампулу вскрывают, полимер промывают водой и физиологическим раствором (0,9%-ный раствор NaCl).

Оценку тромборезистентности полученной пленки проводят двумя методами: измеряя время свертывания крови на поверхности полимера и измеряя количество адгезированных тромбоцитов. В первом методе на поверхность пленки наносят каплю крови человека и измеряют время образования сгустка. Оценку адгезии тромбоцитов проводят с использованием метода электронной микроскопии. На поверхность пленки наносят каплю (~50 мкл) богатой тромбоцитами плазмы крови человека. Пленку и плазму выдерживают при 20°C в течение 15 минут. Затем пленку промывают 0.9% раствором NaCl для удаления неадгезированных тромбоцитов и белков. Пленку обрабатывают 2.5% раствором глутарового альдегида в течение 1 часа и промывают последовательно водой, 20%, 70%, 90% и 100% этанолом. Пленку высушивают и напыляют медью. На поверхности выбирают 20 полей размерами (28×28 мкм), на которых измеряют количество тромбоцитов. Результаты приведены в таблице.

Примеры 2-11. Процесс проводят по примеру 1. Параметры процесса, используемые вещества и свойства модифицированных полимеров приведены в таблице. Примеры 4к-6к являются контрольными.

Видно, что только модификация полимеров смесью гидрофильного мономера и ненасыщенных производных гирудина и овомукоида приводит к уменьшению количества адгезированных поверхностью полимера тромбоцитов при сохранении повышенного времени свертывания крови на поверхности полимера.

Таким образом, предлагаемое изобретение позволяет получать тромборезистентные полимерные материалы с пониженной склонностью к адгезии тромбоцитов при сохранении пониженной способности к свертыванию крови.

Предельные количества модифицирующих соединений, используемых при получении полимерных материалов, определяются следующим. При увеличении количестве гидрофильного мономера выше соотношения гидрофильный мономер:ненасыщенные биологически активные соединения 1:0,2 тромборезистентность материала уже не увеличивается, так как на его поверхности создается достаточно толстый слой гидрофильного полимера, обеспечивающий проявление обоими биологически активными соединениями их биологической активности. При уменьшении количества гидрофильного мономера ниже соотношения гидрофильный мономер:ненасыщенные биологически активные соединения 1:1 тромборезистентность материала увеличивается незначительно. Соотношение ацилированного хлорангидридом акриловой кислоты гирудина и ацилированного хлорангидридом акриловой кислоты овомукоида из белка утиных яиц 1:0,8-1:2 определяется достижением оптимального соотношения между снижением количества адгезированных тромбоцитов и увеличением времени свертывания крови на поверхности полимерного материала.

Способ получения тромборезистентного полимерного материала путем радиационной привитой сополимеризации на поверхность полимерного материала смеси гидрофильного мономера и ненасыщенного биологически активного соединения, отличающийся тем, что в качестве ненасыщенного биологически активного соединения используют смесь ацилированного хлорангидридом акриловой кислоты гирудина и ацилированного хлорангидридом акриловой кислоты овомукоида из белка утиных яиц при их массовом соотношении 1:0,8-1:2 и массовом соотношении гидрофильный мономер:ненасыщенное биологически активное соединение 1:0,2-1:1.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 143.
14.12.2018
№218.016.a759

Комбинированный катализатор и способ получения обогащённого триптаном экологически чистого высокооктанового бензина в его присутствии

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном...
Тип: Изобретение
Номер охранного документа: 0002674769
Дата охранного документа: 13.12.2018
14.12.2018
№218.016.a76b

Способ переработки тяжелых нефтяных фракций

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей...
Тип: Изобретение
Номер охранного документа: 0002674773
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a8ec

Способ получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения...
Тип: Изобретение
Номер охранного документа: 0002675249
Дата охранного документа: 18.12.2018
20.12.2018
№218.016.a928

Способ получения катализатора и способ гидрирования нефтеполимерных смол в его присутствии

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, цветных асфальтобетонов, а также в пищевой и...
Тип: Изобретение
Номер охранного документа: 0002675361
Дата охранного документа: 19.12.2018
08.02.2019
№219.016.b80a

Нанокомпозиционный биоцидный материал

Изобретение относится к области медицины и народного хозяйства, а именно к нанокомпозиционному биоцидному полимерному материалу, включающему 5-40 мас.% неорганической слоистой глины, модифицированной сополимером полидиаллилдиметиламмонийхлорида и полиметакрилатгуанидина, и 60-95 мас.%...
Тип: Изобретение
Номер охранного документа: 0002679147
Дата охранного документа: 06.02.2019
15.02.2019
№219.016.ba8f

Нанокомпозиционный полимерный биоцидный материал и способ его получения

Группа изобретений относится к области медицины. Предложен нанокомпозиционный полимерный биоцидный материал, содержащий: 5-10 мас.% модифицированной неорганической слоистой глины, полученной из суспензии, содержащей неорганическую слоистую глину и модификатор при их массовом соотношении от...
Тип: Изобретение
Номер охранного документа: 0002679804
Дата охранного документа: 13.02.2019
15.03.2019
№219.016.dfe5

Способ получения биоспецифического гемосорбента для выделения протеиназ

Изобретение относится к биотехнологии. Способ предусматривает получение гемосорбента путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора, содержащего 0,1-0,9% мас. овомукоида из белка утиных яиц,...
Тип: Изобретение
Номер охранного документа: 0002681883
Дата охранного документа: 13.03.2019
29.03.2019
№219.016.f5b5

Сополимер норборнена с акрилатом, способ его получения и способ получения нанокомпозита на его основе

Настоящее изобретение относится к синтезу сополимеров норборнена с трет-бутилакрилатом или метилакрилатом. Описан сополимер норборнена и акрилата структурной формулы: где R=Me, Bu, n и m - степени, определяющие состав сополимеров, n=12-75% моль, m=100-n% моль, имеющий величину средневесовой...
Тип: Изобретение
Номер охранного документа: 0002456304
Дата охранного документа: 20.07.2012
30.03.2019
№219.016.f92e

Способ регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом...
Тип: Изобретение
Номер охранного документа: 0002683283
Дата охранного документа: 27.03.2019
20.04.2019
№219.017.3596

Аддитивные поли(3-три (н-алкокси)силилтрицикло[4.2.1.0]нон-7-ены), способ их получения и способ разделения газообразных углеводородов с применением мембран на их основе

Изобретение относится к синтезу аддитивных полимеров. Предложены аддитивные поли(3-три(н-алкокси)силилтрицикло[4.2.1.0]нон-7-ены) общей формулы (I), где R=СН, СН, -CH, -СН, -CH, степень полимеризации n=1600-6000, средневесовая молекулярная масса M 7.0⋅10÷1.9⋅10 г/моль и индекс полидисперсности...
Тип: Изобретение
Номер охранного документа: 0002685429
Дата охранного документа: 18.04.2019
Показаны записи 71-76 из 76.
08.03.2019
№219.016.d45b

Раствор инсулина для перорального введения

Изобретение относится к области фармацевтики, а именно к раствору инсулина для перорального введения, который используют для лечения больных сахарным диабетом. Изобретение заключается в том, что раствор инсулина для перорального применения состоит из воды и инсулина, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002288000
Дата охранного документа: 27.11.2006
15.03.2019
№219.016.dfe5

Способ получения биоспецифического гемосорбента для выделения протеиназ

Изобретение относится к биотехнологии. Способ предусматривает получение гемосорбента путем радикальной полимеризации при комнатной температуре под действием окислительно-восстановительного катализатора полимеризации водного раствора, содержащего 0,1-0,9% мас. овомукоида из белка утиных яиц,...
Тип: Изобретение
Номер охранного документа: 0002681883
Дата охранного документа: 13.03.2019
27.04.2019
№219.017.3df6

Способ получения имплантата для реконструктивно-восстановительной хирургии

Изобретение относится к области медицины, а именно к способу получения имплантата для реконструктивно-восстановительной хирургии, который может применяться в офтальмологии для формирования опорно-двигательной культи при энуклеации. Предложен способ получения имплантата для...
Тип: Изобретение
Номер охранного документа: 0002393878
Дата охранного документа: 10.07.2010
18.05.2019
№219.017.5ba5

Способ получения овомукоида

Изобретение относится к области биохимии. Предложен способ получения овомукоида. К белку утиных яиц добавляют равный объем смеси 0,5 М водного раствора трихлоруксусной кислоты и органического растворителя в объемном отношении 1:1,8-2,3. Отделяют образующийся осадок фильтрованием при 0-5°С....
Тип: Изобретение
Номер охранного документа: 0002460734
Дата охранного документа: 10.09.2012
27.06.2019
№219.017.9933

Средство для лечения бактериальных инфекций

Средство содержит рифабутин, сорбированный в матрице полимерных наночастиц, холестерилфосфат калия, или гликохолат натрия, или гексадецила дигидрофосфат, или α-токоферилсукцинат, водорастворимый полимерный стабилизатор и наполнители. Полимерные наночастицы размером 100-800 нм включают...
Тип: Изобретение
Номер охранного документа: 0002337711
Дата охранного документа: 10.11.2008
29.06.2019
№219.017.9eb2

Способ получения иммобилизованных физиологически активных веществ

Изобретение относится к области биохимии и медицины, а именно к способу получения иммобилизованных физиологически активных веществ, в частности антикоагулянтов крови, используемых для профилактики и лечения тромбозов, тромбофлебита, тромбоэмболии, тромбоэмболических осложнений и т.д. Способ...
Тип: Изобретение
Номер охранного документа: 0002329053
Дата охранного документа: 20.07.2008
+ добавить свой РИД