×
20.07.2015
216.013.6280

СПОСОБ СИНТЕЗА УЛЬТРАДИСПЕРСНЫХ АЛМАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к синтезу алмазных наночастиц, которые могут быть использованы в различных областях техники. Предложенный способ синтеза ультрадисперсных алмазов включает в себя образование плазмы углерода из углеродсодержащего вещества и ее конденсацию охлаждающей жидкостью в условиях кавитации. При этом в качестве плазмообразующего вещества может быть использован любой углеводородный газ или органическая углеродсодержащая жидкость, в т.ч. содержащая дополнительно вещества, содержащие гетероатомы, а также дисперсии частиц углерода не алмазной аллотропной формы в органических жидкостях или воде. В качестве охлаждающей жидкости используется поток жидкости внутри проточного кавитационного аппарата, обеспечивающего дополнительное кавитационное воздействие на охлаждающую жидкость. Данное изобретение позволяет увеличить энергетическую эффективность реализуемого синтеза наноалмазов и обеспечивает возможность управлять свойствами синтезируемых наноалмазов. 3 ил., 1 табл.
Основные результаты: Способ синтеза ультрадисперсных алмазов, включающий образование плазмы углерода из углеродсодержащего вещества и ее конденсацию охлаждающей жидкостью в условиях кавитации, отличающийся тем, что в качестве плазмообразующего вещества может быть использован любой углеводородный газ или органическая углеродсодержащая жидкость, в т.ч. содержащая дополнительно вещества, содержащие гетероатомы, а также дисперсии частиц углерода не алмазной аллотропной формы в органических жидкостях или воде, а в качестве охлаждающей жидкости используется поток жидкости внутри проточного кавитационного аппарата, обеспечивающего дополнительное кавитационное воздействие на охлаждающую жидкость.
Реферат Свернуть Развернуть

Изобретение относится к синтезу алмазных наночастиц (или, согласно более традиционному названию в отечественных литературных источниках, ультрадисперсных алмазов), которые могут быть использованы в материаловедении при создании различного рода нанокомпозитов, в катализаторах, в качестве антиизносных присадок к маслам, в косметологии и фармакологии.

Известно превращение различных форм углерода в алмаз при давлении порядка 100000 кг/см2 [1]. Суть метода заключается в детонации углеродсодержащего взрывчатого вещества с отрицательным кислородным балансом в замкнутом объеме в газовой среде, инертной к углероду, в окружении конденсированной фазы. Недостаток способа состоит в том, что процесс может быть осуществлен только в периодическом режиме и требует достаточно громоздкого оборудования. Кроме того, получаемый продукт синтеза наряду с частицами наноалмазов, содержит частицы аморфного углерода (сажи) и требует проведения операции очистки и обогащения.

Известен способ и устройство плазмохимического синтеза нанообъектов [2]. Способ заключается в том, что создают плазму путем пропускания плазмообразующего газа через электрическую дугу с выходом плазмы через сопло, в которое вводят исходный дисперсный материал. При этом осуществляется воздействие на плазму высокочастотным полем, при одновременной подаче в область между зоной реакции и водоохлаждаемой камерой поток охлаждающего инертного газа. Кроме того, дополнительно в плазму вводят катализатор путем испарения катода, который перемещают по мере его испарения.

Недостатком аналога является сложность оборудования для его реализации, и необходимость в использовании катализаторов.

Известен способ получения углеродосодержащих наночастиц [3], включающий формирование плазменной струи (в качестве плазмообразующего вещества используются газообразные углеводороды) с помощью плазмотрона и введения струи в объем жидких углеводородов. Недостатком способа является пожароопасность из-за совместного применения плазмы и углеводородов в сочетании с непродуманным способом ввода плазменной струи в объем углеводородов, полностью не исключающих смешение с кислородом воздуха, либо требующее реализации дорогостоящих технологических мер направленных на предотвращение случайного возгорания.

Известен способ [4], наиболее близкий к патентуемому, основанный на введении в воду плазменной струи со скоростью ее истечения из сопла порядка 100 м/с. В качестве плазмообразующего вещества используется этиловый спирт либо его водный раствор. Из-за возникающих больших градиентов скоростей и температур, взрывного пара- и вихреобразования в объеме воды в зоне контакта с плазмой происходит образование кавитационных пузырьков, внутрь которых попадают атомы углерода, содержащихся в плазме, как продукт разложения молекул спирта. При схлопывании пузырьков при возникающем давлении более 10000 кг/см2 образуются в соответствии с диаграммой фазовых состояний углерода наноалмазы, которые концентрируются в воде в виде взвеси.

Недостаток способа [4] состоит в том, что в качестве плазмообразующего вещества, предполагается использование спирта, в котором содержание атомов углерода невысоко, тем самым процесс синтезе менее эффективен, чем если бы использовалось сырье, в котором процентное содержание атомов углерода в молекуле выше. Кроме того, процесс не позволяет изменять условия синтеза, тем самым изменяя характеристики получаемых наночастиц, оптимизируя их свойства для той или иной области их применения.

Техническим результатом заявленного изобретения является возможность увеличения энергетической эффективности реализуемого плазмохимического синтеза наноалмазов и возможность управлять свойствами синтезируемых наночастиц, меняя технологические параметры процесса синтеза.

На рисунке 1 приведена фотография лабораторной установки, реализующей данное изобретение. На рисунке 2 приведен типичный результат определения размеров наночастиц методом динамического светорассеивания. На рисунке 3 приведена типичная рентгенограмма (рентгеноструктурный анализ) для одного из полученных образцов наноалмазов.

Технический результат достигается за счет того, что в предлагаемом способе возможно использование в качестве плазмообразующего вещества любого углеродсодержащего вещества. В качестве такого вещества могут быть углеводородные газы, органические жидкости, в т.ч. содержащие дополнительно вещества, имеющие гетероатомы, дисперсии частиц аморфного углерода (сажи) в органических жидкостях или воде и одновременно с этим предусматривается охлаждение и конденсация углеродной плазмы потоком охлаждающей жидкости внутри струйного кавитационного аппарата гидродинамического типа, обеспечивающего дополнительное кавитационное воздействие на охлаждающую жидкость.

Синтез ультрадисперсных (нано-) алмазов состоит в следующем. Плазмообразующее углеродсодержащее вещество, в качестве которого может быть использован любой улеводородный газ, либо органическая жидкость, а также дисперсии частиц технического углерода в органических жидкостях или воде, пропускается через плазматрон, с образованием плазмы, с высоким уровнем содержания атомов углерода.

Плазменная струя увлекается потоком охлаждающей жидкости внутри струйного кавитационного аппарата гидродинамического типа, обеспечивающего дополнительное кавитационное воздействие на охлаждающую жидкость.

При контакте углеродсодержащей плазмы, происходит конденсация атомов углерода в отдельные кластеры. Алмаз - метастабильная форма углерода. Переход других аллотропных модификаций углерода в алмаз возможен при ударно-волновом нагружении его частиц по характерному излому ударной адиабаты графита. Такое нагружение возможно, если конденсация плазмы сопровождается явлениями кавитации, что подробно описано в [4]. Явление кавитации, возникает и в случае, когда плазменная струя направлена в стационарный объем жидкости, и в случае, когда на жидкость не оказывается никакого дополнительного воздействия вызывающего возникновение кавитации. Однако дополнительно кавитационное воздействие на поток охлаждающей жидкости позволяет существенно минимизировать размеры установки, вести процесс в замкнутой системе без использования защитной атмосферы. Также, изменяя интенсивность кавитационного воздействия (для проточных струйных аппаратов), достаточно изменить объем подачи охлаждающей жидкости.

Выбор плазмообразующего вещества с точки зрения возможности образования алмазов не принципиален и осуществляется исходя из обеспечения максимальной энергетической эффективности ведения процесса, доступности того или иного сырья либо с учетом необходимости получения наночастиц алмазов с определенными свойствами. Чем больше процентное содержание атомов углерода в плазмообразующем веществе, тем большее количество наноалмазов можно получить, затратив одно и то же количество энергии. Кроме того, если возникает необходимость синтеза наноалмазов, содержащих гетероатомы, возможно использовать в качестве плазмообразующей жидкости смеси, например, углеводородов с веществами содержащими гетероатомы. В частности, для алмазов, содержащих гетероатомы азота, целесообразно применение в качестве добавки ацетонитрила, а в случае атомов кремния - тетраэтоксисилана. В целом, выбор плазмообразующего вещества не принципиален с точки зрения возможности получения наноалмазов согласно заявляемому способу и не ограничивает данное изобретение. Также не принципиален выбор охлаждающей жидкости, который определяется либо экономической целесообразностью (вода) либо приданию поверхности наночастиц алмазов определенных свойств.

Использование того или иного типа плазматрона или кавитационного проточного аппарата с точки зрения реализации изобретения непринципиально, поскольку не имеет значения, каким способом будет получена плазма и каким способом будет создаваться кавитационное воздействие на поток жидкости.

Для подтверждения заявляемого технического результата была сконструирована простейшая лабораторная установка и проведен ряд синтезов. Установка включала дуговой плазматрон и проточный кавитационный аппарат гидродинамического типа. Размер частиц определялся методом динамического светорассеивания, а содержание гетероатомов в составе наночастиц подтверждалось данными элементного анализа. Первичная идентификация алмазов проводилась облучением дисперсии ультрафиолетовым светом (алмазы флуоресцируют, в отличие от других аллотропных форм углерода). Для более точной идентификации применялся метод рентгеноструктурного анализа. Данные по серии экспериментов представлены в таблице 1.

Таблица 1
Плазмообразующее вещество Охлаждающая жидкость Выход* алмазного продукта, г/час Средний размер частиц, нм
1 Метан вода 36.1 5
2 Пропан-бутановая фракция вода 38.5 7
3 Дизельная нефтяная фракция вода 43,4 11
4 Дизельная нефтяная фракция дизельная нефтяная фракция** 47,2 14
5 Дизельная нефтяная фракция + 12% технического углерода вода 45,8 16
6 Вода + 62% частиц углерода (тонкоизмельченный активированный порошок угля) вода 43,6 12
7 Этиловый спирт вода 39,9 6

8 Этиловый спирт + 2,3% тетраэтоксисилана вода 38,4*** 8
9 Ацетон + 1,5% ацетонитрила вода 37,1**** 12
*выход сухого порошка после выпаривания дисперсии частиц в охлаждающей жидкости;
**поверхность выделенных частиц обладала ярко выраженными лиофильными свойствами и легко диспергировалась в органических растворителях, в примере 3 частицы проявляли больше гидрофильные свойства;
***содержание атомов кремния 0,98%;
****содержание атомов азота 0,54%.

Также был проведен эксперимент, реализующий способ [4]. Затраты электроэнергии на питание плазматрона, отнесенное к производительности установки по наноалмазам, для заявляемого способа составили 0,87 (согласно примеру 7 табл.1) по сравнению с прототипом [4].

Таким образом, вышеприведенные данные подтверждают достоверность заявленного технического результата.

Источники информации

1. RU 2359902, C01B 31/06.

2. RU 2371381, 2009.

3. B11283 C01B 31/00, 2008.

4. RU 2484014 C2 (прототип).

Способ синтеза ультрадисперсных алмазов, включающий образование плазмы углерода из углеродсодержащего вещества и ее конденсацию охлаждающей жидкостью в условиях кавитации, отличающийся тем, что в качестве плазмообразующего вещества может быть использован любой углеводородный газ или органическая углеродсодержащая жидкость, в т.ч. содержащая дополнительно вещества, содержащие гетероатомы, а также дисперсии частиц углерода не алмазной аллотропной формы в органических жидкостях или воде, а в качестве охлаждающей жидкости используется поток жидкости внутри проточного кавитационного аппарата, обеспечивающего дополнительное кавитационное воздействие на охлаждающую жидкость.
СПОСОБ СИНТЕЗА УЛЬТРАДИСПЕРСНЫХ АЛМАЗОВ
СПОСОБ СИНТЕЗА УЛЬТРАДИСПЕРСНЫХ АЛМАЗОВ
СПОСОБ СИНТЕЗА УЛЬТРАДИСПЕРСНЫХ АЛМАЗОВ
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
27.06.2013
№216.012.503c

Способ получения силиказолей, растворимых в безводных органических растворителях

Изобретение относится к химической технологии получения коллоидных частиц кремнезема, а именно его золей (силиказолей), растворимых в безводных органических растворителях, и может найти применение в химической промышленности для получения различных наноструктурных полимерных композиционных...
Тип: Изобретение
Номер охранного документа: 0002486133
Дата охранного документа: 27.06.2013
20.08.2013
№216.012.5f7d

Композиция для придания поверхности свойств самоочищения на основе эффекта лотоса

Изобретение относится к области химической технологии получения лакокрасочных материалов. Композиция для придания поверхности свойств самоочищения на основе эффекта лотоса включает гидрофобизирующий компонент амиды или эфиры перфторполиоксаалкиленсульфо- или перфторполиоксаалкиленкарбоновых...
Тип: Изобретение
Номер охранного документа: 0002490077
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6449

Поливинилхлоридный (перхлорвиниловый) лак с улучшенными характеристиками

Изобретение относится к способу модификации лакокрасочных материалов нанодисперсными слоистыми силикатами, диспергированными в растворе высокомолекулярного соединения при помощи ультразвуковой обработки. Лак на основе перхлорвиниловой смолы и органического растворителя содержит полностью...
Тип: Изобретение
Номер охранного документа: 0002491310
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.644b

Битумный лак с улучшенными характеристиками

Изобретение относится к лакокрасочному материалу, модифицированному нанодисперсными слоистыми силикатами, диспергированными в растворе высокомолекулярного соединения при помощи ультразвуковой обработки. Лак используют для обработки изделий и конструкций из бетона, металла, дерева, кирпича и...
Тип: Изобретение
Номер охранного документа: 0002491312
Дата охранного документа: 27.08.2013
27.12.2013
№216.012.9114

Способ очистки углеродного наноматериала от металлсодержащего катализатора

Изобретение относится к химической технологии получения углеродных наноматериалов (УНМ), а именно к их очистке от металлсодержащего катализатора. Очистка производится путем растворения катализатора различными реагентами в электролизере, катодное и анодное пространство которого разделено...
Тип: Изобретение
Номер охранного документа: 0002502833
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.a8d7

Фотокатализатор на основе оксида титана и способ его получения

Изобретение относится к области катализа. Описан способ получения фотокатализатора, состоящий из осаждения прекурсора катализатора на основе оксида титана из сульфатного раствора титана, смешения полученного осадка с органическим соединением, сушки и последующего обжига. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002508938
Дата охранного документа: 10.03.2014
20.07.2014
№216.012.de16

Фторсодержащее пав и способ его получения

Изобретение относится к химической технологии получения фторсодержащих поверхностно-активных веществ, которые могут найти применение в области создания антифрикционных составов, лакокрасочных материалов, гидрофобизаторов для широкого спектра материалов, составов для антикоррозионной защиты...
Тип: Изобретение
Номер охранного документа: 0002522640
Дата охранного документа: 20.07.2014
20.11.2014
№216.013.06bb

Способ осуществления плазмохимических взаимодействий между жидкими углеводородами, включая их производные и газообразными веществами или несмешивающимися жидкостями в т.ч. неорганическими

Изобретение относится к способу осуществления плазмохимических взаимодействий между жидкими углеводородами, включая их производные, и газообразными веществами или несмешивающимися жидкостями, в т.ч. неорганическими. При этом газы или жидкости вначале диспергируют в жидкой фазе углеводородов...
Тип: Изобретение
Номер охранного документа: 0002533124
Дата охранного документа: 20.11.2014
27.03.2016
№216.014.dcd3

Способ некаталитического гидрообессеривания нефтепродуктов

Изобретение относится к области химической технологии некаталитического гидрообессеривания нефтепродуктов: бензиновых, керосиновых, дизельных фракций, вакуумных дистиллятов, нефтяных остатков. Изобретение может быть использовано в нефтегазовой, химической и энергетической отраслях...
Тип: Изобретение
Номер охранного документа: 0002579099
Дата охранного документа: 27.03.2016
Показаны записи 1-5 из 5.
20.11.2014
№216.013.06bb

Способ осуществления плазмохимических взаимодействий между жидкими углеводородами, включая их производные и газообразными веществами или несмешивающимися жидкостями в т.ч. неорганическими

Изобретение относится к способу осуществления плазмохимических взаимодействий между жидкими углеводородами, включая их производные, и газообразными веществами или несмешивающимися жидкостями, в т.ч. неорганическими. При этом газы или жидкости вначале диспергируют в жидкой фазе углеводородов...
Тип: Изобретение
Номер охранного документа: 0002533124
Дата охранного документа: 20.11.2014
27.03.2016
№216.014.dcd3

Способ некаталитического гидрообессеривания нефтепродуктов

Изобретение относится к области химической технологии некаталитического гидрообессеривания нефтепродуктов: бензиновых, керосиновых, дизельных фракций, вакуумных дистиллятов, нефтяных остатков. Изобретение может быть использовано в нефтегазовой, химической и энергетической отраслях...
Тип: Изобретение
Номер охранного документа: 0002579099
Дата охранного документа: 27.03.2016
29.04.2019
№219.017.41cc

Композиционный материал для изготовления виброудароизоляторов

Изобретение относится к виброударопоглощающим композиционным материалам, применяемым для изготовления виброудароизоляторов. Композиционный материал имеет тонкую многослойную структуру, состоящую из чередующихся упругих и вязкопластичных слоев, армированных тканым материалом. Толщина каждого...
Тип: Изобретение
Номер охранного документа: 0002353527
Дата охранного документа: 27.04.2009
29.04.2019
№219.017.41d7

Радиопоглощающий материал

Изобретение относится к области электрорадиотехники, в частности к материалу для экранирования электромагнитного излучения при создании технических средств радиоэлектронной аппаратуры. Техническим результатом заявленного изобретения является повышение радиопоглощающих свойств материала как по...
Тип: Изобретение
Номер охранного документа: 0002355081
Дата охранного документа: 10.05.2009
06.06.2023
№223.018.78db

Способ получения низкотемпературной плазмы и горячего газа для физико-химического воздействия на вещества и установка для получения низкотемпературной плазмы и горячего газа для физико-химического воздействия на вещества (варианты)

Группа изобретений относится к области плазмохимии, а именно к способам получения низкотемпературной плазмы и горячего газа для физико-химического воздействия на вещества и установкам для его осуществления. В группе изобретений предлагается способ и два варианта установки для получения...
Тип: Изобретение
Номер охранного документа: 0002757377
Дата охранного документа: 14.10.2021
+ добавить свой РИД