×
10.07.2015
216.013.6137

НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР "В ЦЕЛОМ" КОДИРОВАННЫХ СИГНАЛОВ С ФАЗОВОЙ МАНИПУЛЯЦИЕЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции сигналов с фазовой манипуляцией. Некогерентный цифровой демодулятор кодированных сигналов с фазовой манипуляцией содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов, генератор тактовых импульсов, два вычислительных устройства, заданное число квадратичных преобразователей, равное числу кодовых последовательностей, образующих блок квадратичных преобразователей и решающее устройство, при этом каждое вычислительное устройство состоит из заданного числа вычислителей откликов. 7 ил.
Основные результаты: Некогерентный цифровой демодулятор кодированных сигналов с фазовой манипуляцией, содержащий аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов и генератор тактовых импульсов, отличающийся тем, что он дополнительно содержит два вычислительных устройства, заданное число квадратичных преобразователей, равное числу кодовых последовательностей, образующих блок квадратичных преобразователей и решающее устройство, при этом каждое вычислительное устройство состоит из заданного числа вычислителей откликов, входы которых соединены вместе и образуют общий вход вычислительного устройства, соединенный с соответствующим выходом канала квадратурной обработки сигнала, выход m-го вычислителя отклика первого вычислительного устройства соединен с первым входом m-го квадратичного преобразователя, а выход m-го вычислителя отклика второго вычислительного устройства - со вторым входом m-го квадратичного преобразователя, выходы генератора тактовых импульсов соединены с управляющими тактовыми входами аналого-цифрового преобразователя, регистра сдвига многоразрядных кодов на четыре отсчета, канала квадратурной обработки, вычислительного устройства и решающего устройства, выходы всех квадратичных преобразователей соединены с входами решающего устройства, выход которого является выходом демодулятора.
Реферат Свернуть Развернуть

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции «в целом» кодированных двоичных сигналов с фазовой манипуляцией (ФМ).

Известно идеальное устройство отождествления «в целом» сложных сигналов (Бородин Л.Ф. Идеальное устройство отождествления для сложных сигналов. «Радиотехника», т. 15, 1960, №8), содержащее функциональные преобразователи принимаемого сигнала, формирующие «меру похожести» его на каждый из возможных передаваемых сигналов и решающее устройство. Также известно устройство оптимального приема сигнала (Филиппов Л.И. Основы теории радиоприема дискретных сигналов (синтез и анализ). М.: Наука, 1974), содержащее два коррелятора входного сигнала с образцами принимаемого и сопряженного с ним сигналов, два квадратичных устройства, два сумматора и схему сравнения.

Близким к предлагаемому устройству является устройство некогерентной демодуляции сигналов «в целом» (см. Финк Л.М. Теория передачи дискретных сообщений. Издание второе. М.: «Советское радио», 1970). Устройство некогерентной демодуляции «в целом» кодированного двоичного сигнала из общего множества M кодовых комбинаций состоит из двух согласованных фильтров на каждый двоичный элемент, двух квадратичных детекторов, вычитающего устройства, запоминающего устройства весовых коэффициентов, M перемножителей, M сумматоров и схемы сравнения.

Эти устройства осуществляют квадратурную корреляционную обработку входного сигнала с накоплением и последующим сравнением результатов по всем вариантам принимаемых кодовых комбинаций.

К недостаткам известных устройств следует отнести:

- сложность реализации высокоскоростных корреляторов или согласованных фильтров, большого числа перемножителей и накапливающих сумматоров, как в аналоговой, так и в цифровой форме;

- необходимость выполнения большого числа арифметических операций на каждый поступивший отсчет сигнала, что требует использования высокоскоростных вычислителей.

Наиболее близким по технической сущности и внутренней структуре к предлагаемому устройству является цифровой демодулятор сигналов с относительной фазовой манипуляцией (патент RU 2505922 С2, H04B 1/10, H04D 3/02, 27.01.2014, Бюл. №3, авторы Литвиненко В.П., Глушков А.Н.).

Его недостатком является отсутствие возможности высокоскоростной демодуляции «в целом» кодированных фазоманипулированных сигналов.

Задачей предлагаемого технического решения является обеспечение высокоскоростной некогерентной цифровой демодуляции «в целом» кодированных сигналов с фазовой манипуляцией.

Поставленная задача решается тем, что цифровой демодулятор сигналов с относительной фазовой манипуляцией, содержащий аналого-цифровой преобразователь (АЦП), регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки (ККО) сигналов и генератор тактовых импульсов, дополнительно содержит два вычислительных устройства (ВУ), заданное число M квадратичных преобразователей (КП), равное числу кодовых последовательностей, образующих блок квадратичных преобразователей (БКП) и решающее устройство (РУ). Каждое ВУ состоит из M вычислителей откликов (ВО), входы которых соединены вместе и образуют общий вход ВУ, соединенный с соответствующим выходом ККО. Выход m-го ВО первого ВУ соединен с первым входом m-го КП, а выход m-го ВО второго ВУ - со вторым входом m-го КП. Выходы всех КП соединены с входами решающего устройства РУ, выход которого является выходом демодулятора. Выходы генератора тактовых импульсов соединены с управляющими (тактовыми) входами АЦП, регистра сдвига многоразрядных кодов на четыре отсчета, ККО, ВУ и РУ.

Предлагаемое техническое решение поясняется чертежами.

На фиг. 1 представлена структурная схема предлагаемого устройства, на фиг. 2 - процесс квантования, на фиг. 3 - нормированные результаты моделирования отклика демодулятора при обработке в целом фазоманипулированного сигнала на базе последовательностей Уолша, на фиг. 4 - те же значения в моменты цикловой синхронизации, на фиг. 5 - зависимости вероятности ошибки от отношения сигнал/шум, на фиг. 6 - нормированные результаты моделирования отклика демодулятора при обработке в целом фазоманипулированного сигнала на базе последовательности Баркера при отсутствии помех, а на фиг. 7 - те же результаты, но при наличии шумовой помехи при отношении сигнал/шум 3 дБ.

Устройство содержит АЦП 1, на вход которого поступает принимаемый сигнал 2 с выхода усилителя промежуточной частоты приемника, а на управляющий вход тактовые импульсы 3. Выход АЦП 1 соединен с входом регистра 4 сдвига многоразрядных кодов на четыре отсчета, четные выходы которого соединены с соответствующими входами вычитателя 5 первого ККО 6, а нечетные выходы - с соответствующими входами вычитателя 7 второго ККО 8. Каждый ККО помимо вычитателя содержит n каскадно соединенных блоков накопления отсчетов (БНО). Количество БНО n зависит от числа N периодов сигнала в информационном символе и определяется двоичным логарифмом N (n=log2N). Такое построение устройства обеспечивает минимальное количество БНО, при этом число обрабатываемых периодов сигнала равно N=2n.

Первый ККО 6 содержит последовательно соединенные БНО 9-1, …, 9-n, а второй ККО 8 - последовательно соединенные БНО 10-1, …, 10-n. Каждый из БНО состоит из регистра сдвига многоразрядных кодов и сумматора. Блоки 9-1, …, 9-n накопления отсчетов содержат регистры 11-1, …, 11-n сдвига многоразрядных кодов и сумматоры 12-1, …, 12-n соответственно, а БНО 10-1, …, 10-n - соответственно регистры 13-1, …, 13-n сдвига многоразрядных кодов и сумматоры 14-1, …, 14-n. В каждом блоке 9 (10) накопления отсчетов первый вход регистра 11 (13) сдвига является входом блока 9 (10) накопления отсчетов. Второй вход сумматора 12 (14) соединен с выходом регистра 11 (13) сдвига. Выход сумматора 12 (14) является выходом блока 9 (10) накопления отсчетов, а тактовый вход регистра 11 (13) сдвига является управляющим входом блока 9 (10) накопления отсчетов. Выход вычитателя 5 соединен с входом блока 9-1 накопления отсчетов ККО 6, а выход блока 9-n накопления отсчетов ККО 6 - с входом первого ВУ 15. Выход вычитателя 7 соединен с входом БНО 10-1 ККО 8, а выход БНО 10-n ККО 8 - с входом второго ВУ 16. Выход m-го ВО 15-m первого ВУ 15 соединен с первым входом m-го КП 17-m блока квадратичных преобразователей 17, а выход m-го ВО 16-m второго ВУ 16 - со вторым входом m-го КП 17-m БКП 17. Выходы всех КП 17-m соединены с входами решающего устройства РУ 18, выход которого является выходом демодулятора 19.

На управляющий вход решающего устройства 18 поступают тактовые синхроимпульсы 20 от генератора тактовых импульсов 21. Управляющие входы АЦП 1, регистра 4 сдвига многоразрядных кодов на четыре отсчета, блоков 9 (10) накопления отсчетов, ВУ 15 (16) соединены с соответствующими входами генератора 21 тактовых импульсов.

Устройство работает следующим образом.

Входной фазоманипулированный сигнал на входе 2 демодулятора вида s(t)=Ssin(2πf0t+am(t)π+ψ0), где S - амплитуда, f0 - несущая частота, ψ0 - начальная фаза, am(t) - m-я двоичная кодовая последовательность модулирующих фазу символов со значениями 0 или 1 ( , М - число кодовых комбинаций), поступает на вход аналого-цифрового преобразователя (АЦП) 1, который формирует по четыре отсчета входного сигнала на период повторения Τ=1/f0 в соответствии с тактовыми импульсами 3 от генератора 21. Информационный символ сигнала длительностью ТЭ содержит N периодов Τ несущего колебания, N=2n, n - целое число.

Процесс квантования входного сигнала s(t) показан на фиг. 2 для трех последовательных информационных элементов с чередующимися фазами длительностью ТЭ по 4 периода Τ (N=4, n=2). Сплошной линией показан сигнал s(t), а точками отмечены его отсчеты АЦП в моменты квантования, совпадающие с сеткой на фиг. 2, i - номер отсчета. На каждом периоде Τ АЦП формирует по 4 отсчета (два нечетных и два четных), частота квантования fКВ равна fКВ=4·f0.

Допустим, что обеспечена тактовая и цикловая синхронизация. На входы вычитателя 5 сначала поступают четные отсчеты текущего периода, равные S·sin(ψ0) и -S·sin(ψ0), а на его выходе формируется их разность, равная 2S·sin(ψ0), которая запоминается в регистре 11-1. В следующем периоде сигнала на выходе вычитателя 5 также получим величину 2S·sin(ψ0) (фиг. 2), а на выходе сумматора 12-1 - их сумму 4S·sin(ψ0). После поступления N периодов входного сигнала (текущего элемента) при отсутствии помех на выходе сумматора 12-n получим результат 2NS·sin(ψ0) обработки 2N отсчетов информационного элемента длительностью ТЭ. На входы вычитателя 7 сначала поступают нечетные отсчеты текущего периода, равные S·cos(ψ0) и -S·cos(ψ0), а на его выходе формируется их разность, равная 2S·cos(ψ0), которая запоминается в регистре 13-1. Далее накопление производится аналогично, и в результате на выходе сумматора 14-n по окончании текущего информационного элемента получим величину, равную 2NS·cos(ψ0).

Двоичная модуляция фазы со значениями 0 или π означает изменение знака информационного элемента. Чередование этих знаков определяет передаваемую кодовую комбинацию am(t), которую можно описать последовательностью символов bm,j со значениями ±1, равных

m - номер кодовой комбинации, - номер информационного символа, r - длина кодового слова.

Таким образом, на выходах квадратурных каналов (сумматоров 12-n и 14-n) в моменты окончания приема j-го элемента кода формируются величины y0,j=bj2NS·sin(ψ0) и y1,j=bj2NS·cos(ψ0), где bj - символы (±1) принимаемой кодовой комбинации. Эти результаты передаются в вычислительные устройства 15 и 16, которые в вычислителях откликов ВО-m демодулятора m-го кодового слова определяют реакции квадратурных каналов демодулятора на принимаемый сигнал, равные соответственно

В квадратичных преобразователях 17-m вычисляются величины

по максимуму которых в решающем устройстве выбирается номер m принятого кодового слова. Для ортогональных кодов (например, последовательностей Уолша) при отсутствии помех, если передавалась m0-я кодовая комбинация, то , а для остальных кодовых слов νm=0, m≠m0. Для квазиортогональных кодов νm>0, m≠m0. Инверсные кодовые комбинации демодулятор не различает.

В предлагаемом демодуляторе за один период сигнала в двух ККО необходимо выполнить 2(log2N+1) операций сложения/вычитания многоразрядных кодов и запоминать 2N полученных значений. Таким образом при обработке каждого информационного символа обеспечивается минимум арифметических операций на период сигнала и, следовательно, высокая скорость обработки элемента сигнала. В каждом из двух вычислительных устройств необходимо выполнить (r-1)·M операций сложения/вычитания, а в каждом из ВО соответственно (r-1) таких операций (r - длина кодового слова). Как видно, необходимость в умножении чисел отсутствует. В квадратичном преобразователе операция вычисления вида может выполняться приближенно, например, в виде простого выражения |a|+|b|.

Технически предлагаемое устройство может быть реализовано либо как специализированная интегральная схема, либо как микропроцессорное устройство. Регистры сдвига многоразрядных кодов могут выполняться на базе однобитовых регистров сдвига либо оперативных запоминающих устройств.

Проведено моделирование работы демодулятора «в целом» ортогональных последовательностей Уолша [5] длиной r=8 бит, матрица wm,j=±1 которых (m - номер последовательности, j - номер элемента кода) имеет вид

Двоичный код номера последовательности имеет длину k=3 бита (k=log2r), информационная скорость равна k/r=3/8.

На фиг. 3 показаны временные диаграммы нормированных откликов νm,i демодулятора при отсутствии помех и N=64 ( - номер переданной последовательности, i=t/TЭ - нормированное время, а при целочисленных значениях - порядковый номер принятой последовательности). В примерах сплошная линия соответствует m=0, а пунктирная - m=2. Как видно, при промежуточных значениях времени t, не кратных ТЭ, имеют место значительные выбросы откликов (выбросы взаимокорреляционной функции принятого и ожидаемого сигналов). Значения тех же откликов в моменты времени, кратные ТЭ (в моменты прихода цикловых синхроимпульсов), показаны на фиг. 4 (имеют смысл только целочисленные значения i). Как видно, в этом случае имеется полная ортогональность последовательностей Уолша.

При наличии шума форма откликов демодулятора искажается, и появляются ошибки, вероятность которых равна

где h2 - отношение сигнал/шум. Зависимость pОШ(h2) показана на фиг. 5 сплошной линией. Пунктиром показана вероятность искажения кодовой комбинации при поэлементном приеме с исправлением ошибок. Точечная линия отображает предельную помехоустойчивость при идеальном исправлении всех обнаруженных ошибок в соответствии с теоремой Л.М. Финка [3]. Отдельными «жирными» точками показаны результаты статистического имитационного моделирования.

Как видно, при некогерентной демодуляции «в целом» наблюдается значительный выигрыш в помехоустойчивости по сравнению с поэлементной обработкой кодированного сигнала, практически обеспечивается предельная помехоустойчивость (граница Л.М. Финка). Аналогичные результаты получены и для других кодов.

Особый интерес может представлять некогерентный демодулятор «в целом» одного сигнала (М=1) с хорошими корреляционными свойствами, например, последовательности Баркера.

На фиг. 6 показан пример зависимости отклика демодулятора ν(i) от времени (i=t/TЭ - нормированное время) для периодически повторяющегося двоичного кода Баркера вида 1111100110101 (r=13) при отсутствии помех и N=64, а на фиг. 7 - при наличии шумовой помехи с низким отношением сигнал/шум 3 дБ. Такие сигналы и соответствующие им демодуляторы можно использовать в цифровых системах цикловой синхронизации.

Литература

1. Бородин Л.Ф. Идеальное устройство отождествления для сложных сигналов. «Радиотехника», т. 15, 1960, №8.

2. Филиппов Л.И. Основы теории радиоприема дискретных сигналов (синтез и анализ). М.: Наука, 1974.

3. Финк Л.М. Теория передачи дискретных сообщений. Издание второе. М.: «Советское радио», 1970.

4. Патент RU 2505922 С2, H04B 1/10, H04D 3/02, 27.01.2014, Бюл. №3, авторы Литвиненко В.П., Глушков А.Н..

5. Варакин Л.Е. Системы связи с широкополосными сигналами. М.: Радио и связь, 1985.

Некогерентный цифровой демодулятор кодированных сигналов с фазовой манипуляцией, содержащий аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов и генератор тактовых импульсов, отличающийся тем, что он дополнительно содержит два вычислительных устройства, заданное число квадратичных преобразователей, равное числу кодовых последовательностей, образующих блок квадратичных преобразователей и решающее устройство, при этом каждое вычислительное устройство состоит из заданного числа вычислителей откликов, входы которых соединены вместе и образуют общий вход вычислительного устройства, соединенный с соответствующим выходом канала квадратурной обработки сигнала, выход m-го вычислителя отклика первого вычислительного устройства соединен с первым входом m-го квадратичного преобразователя, а выход m-го вычислителя отклика второго вычислительного устройства - со вторым входом m-го квадратичного преобразователя, выходы генератора тактовых импульсов соединены с управляющими тактовыми входами аналого-цифрового преобразователя, регистра сдвига многоразрядных кодов на четыре отсчета, канала квадратурной обработки, вычислительного устройства и решающего устройства, выходы всех квадратичных преобразователей соединены с входами решающего устройства, выход которого является выходом демодулятора.
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
НЕКОГЕРЕНТНЫЙ ЦИФРОВОЙ ДЕМОДУЛЯТОР
Источник поступления информации: Роспатент

Показаны записи 61-70 из 245.
10.01.2015
№216.013.1901

Конденсационная камера

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока,...
Тип: Изобретение
Номер охранного документа: 0002537829
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19f0

Способ определения силы резания

Изобретение относится к измерительной технике и касается, в частности, определения силы, необходимой для обработки резанием металлов и сплавов. Сущность: стандартную экспериментальную кривую упрочнения перестраивают в координаты «напряжение (σ) - истинная относительная деформация (ε)»,...
Тип: Изобретение
Номер охранного документа: 0002538068
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b74

Устройство для прошивки глубоких отверстий в металлических заготовках и способ с его применением

Изобретение относится к электроэрозионной, электрохимической и эрозионно-химической прошивке глубоких отверстий в металлических заготовках. Устройство содержит подключенные к источнику тока электрод-инструмент и съемную втулку из эрозионностойкого материала, размещенную внутри...
Тип: Изобретение
Номер охранного документа: 0002538456
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1cb0

Индукторная машина

Изобретение относится к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа, работающим преимущественно на выпрямительную нагрузку, применяемым, например, в генераторных установках автотракторной техники. Индукторная машина содержит переднюю, заднюю крышки,...
Тип: Изобретение
Номер охранного документа: 0002538772
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.29d0

Ветроколесо

Изобретение относится к ветроэнергетике, а именно к ветроколесам ветросиловых и ветроэлектроэнергетических установок с горизонтальной осью вращения, преимущественно предназначенным для работы с электрогенераторами сегментного типа. Технический результат, заключающийся в упрощении и удешевлении...
Тип: Изобретение
Номер охранного документа: 0002542161
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a02

Установка для обработки нанокомпозитов в водородной плазме

Изобретение относится к вакуумно-плазменной обработке композитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и...
Тип: Изобретение
Номер охранного документа: 0002542211
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a07

Устройство для электрохимического маркирования поверхности металлической детали под упругим диэлектрическим покрытием и способ с его применением

Изобретение предназначено для нанесения информационных знаков на металлические детали, имеющие упругие диэлектрические покрытия. Устройство содержит инъектор для электролита с изолированными друг от друга металлическими соплами, которые индивидуальными проводами подключены к коммутатору,...
Тип: Изобретение
Номер охранного документа: 0002542216
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a64

Способ очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Способ очистки воздуха заключается в попеременном пропускании очищаемого воздуха через адсорбент, находящийся в двух адсорберах, при этом работу одного...
Тип: Изобретение
Номер охранного документа: 0002542309
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2be7

Устройство ориентации гелиоустановки

Изобретение относится к гелиотехнике, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. В устройстве ориентации гелиоустановки, содержащем основание с...
Тип: Изобретение
Номер охранного документа: 0002542707
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2daa

Способ электрохимической обработки металлических деталей в рабочей среде с переменной проводимостью и устройство для его осуществления

Изобретение относится к электрохимической размерной обработке металлических деталей в рабочей среде с переменной проводимостью. Вначале межэлектродный зазор заполняют рабочей средой и на электрод-инструмент и деталь подают импульсы тока до достижения рабочей средой температуры порога...
Тип: Изобретение
Номер охранного документа: 0002543158
Дата охранного документа: 27.02.2015
Показаны записи 61-70 из 304.
20.07.2014
№216.012.e229

Статор

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам с преимущественно тихоходными колесами. Изобретение направлено на уменьшение массы и габаритов генератора при минимизации его стоимости. Cтатор содержит основание, катушки, источник возбуждения и два полосовых...
Тип: Изобретение
Номер охранного документа: 0002523683
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e22b

Статор сегментного ветроэлектрогенератора

Изобретение относится к области ветроэнергетики. Статор сегментного ветроэлектрогенератора содержит источник возбуждения, Г-образные магнитопроводы, катушки, основание, крепежные элементы, между основными катушками установлены дополнительные катушки с сердечниками, снаружи которых размещены...
Тип: Изобретение
Номер охранного документа: 0002523685
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.eb62

Способ получения нитевидных нанокристаллов полупроводников

Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой...
Тип: Изобретение
Номер охранного документа: 0002526066
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec0d

Статор ветроэлектроагрегата

Изобретение относится к ветроэнергетике, известны статоры ветроэлектрогенераторов сегментного типа. Технический результат, заключающийся в упрощении и удешевлении конструкции, а также возможности обеспечения крутки, достигается за счет того, что статор ветроэлектроагрегата, содержащий...
Тип: Изобретение
Номер охранного документа: 0002526237
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec77

Штамп для сборки сферических запорных элементов

Изобретение относится к штампам для обработки металлов давлением и может быть использовано для штамповки сферических запорных элементов. Штамп содержит верхнюю половину с полусферической полостью, в которой соосно ее вертикальной оси установлен верхний направляющий палец, и нижнюю половину с...
Тип: Изобретение
Номер охранного документа: 0002526343
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ee6c

Многофункциональный распределитель для управления шаговым двигателем

Изобретение относится к области электротехники и может быть использовано в системах с шаговым электроприводом на базе трехфазных, четырехфазных и шестифазных шаговых двигателей. Техническим результатом является расширение функциональных возможностей за счет обеспечения известных режимов...
Тип: Изобретение
Номер охранного документа: 0002526855
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee70

Трехтактный распределитель импульсов с автоматической коррекцией одиночных ошибок

Изобретение относится к области электротехники и может быть использовано в дискретном электроприводе систем автоматизации технологических процессов. Технический результат заключается в расширении эксплуатационных возможностей распределителя благодаря автоматическому обнаружению, индикации и...
Тип: Изобретение
Номер охранного документа: 0002526859
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f197

Способ испытания на коррозионную стойкость интегральных схем

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость. Сущность: перед испытанием ИС проводят проверку внешнего вида, электрических параметров и проверку герметичности, нагревают до температуры плюс 125°С со скоростью не более...
Тип: Изобретение
Номер охранного документа: 0002527669
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f199

Способ испытания листовых материалов на растяжение

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях одноосного растяжения в машиностроении, автомобилестроении, авиастроении и других отраслях промышленности. Сущность: образец прямоугольной...
Тип: Изобретение
Номер охранного документа: 0002527671
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f22f

Ротор ветроэлектрогенератора

Изобретение относится к области ветроэнергетики, в частности к роторам ветроэлектрогенераторов сегментного типа. В роторе ветроэлектрогенератора, содержащем ступицу, лопасти, дугообразные элементы и магнитопроводы, согласно изобретению магнитопроводы выполнены в виде отрезков труб, внутри...
Тип: Изобретение
Номер охранного документа: 0002527821
Дата охранного документа: 10.09.2014
+ добавить свой РИД