×
10.07.2015
216.013.603b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ НИКЕЛЬ-РЕДКОЗЕМЕЛЬНЫЙ МЕТАЛЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению лигатуры никель-редкоземельный металл. В способе расплавляют никель, выдерживают полученный расплав и смешивают его с редкоземельным металлом, производят индукционное перемешивание расплава, его разливку и охлаждение, при этом расплавляют никель в вакууме в инертном тигле индукционной печи, полученный расплав нагревают до температуры 1500-1700°C и выдерживают до его дегазации в плавильной камере под вакуумом, после чего снижают температуру расплава никеля до 1400-1550°C и в вакууме или атмосфере инертного газа порционно добавляют в него редкоземельный металл. Изобретение позволяет обеспечить низкое содержание в лигатуре вредных примесей, например кислорода, серы, азота, и примесей цветных металлов, например свинца, висмута, сурьмы, олова, цинка, улучшить рафинирующее действие лигатуры и обеспечить точный расчет количества лигатуры, необходимого для рафинирования сплавов. 5 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к области металлургии, а именно к области получения лигатур никель-редкоземельный металл (далее - РЗМ), и может быть использовано при рафинировании сплавов, в частности литейных и деформируемых жаропрочных сплавов на основе никеля.

Получение качественных слитков или отливок во многом зависит от качества исходных шихтовых материалов, в частности и от лигатур Ni-РЗМ. Значительное улучшение качества структуры сплавов достигается за счет использования лигатур, содержащих РЗМ. Лигатуры Ni-РЗМ способствуют глубокому очищению никелевых сплавов от вредных примесей кислорода, азота, серы и повышают эксплуатационные характеристики сплавов, такие как жаростойкость и длительная прочность при высоких рабочих температурах.

Качество рафинирования жаропрочных никелевых сплавов от вредных примесей напрямую зависит от чистоты лигатур Ni-РЗМ. При повышенном содержании вредных примесей в лигатурах Ni-РЗМ часть РЗМ уже связана в тугоплавкие неметаллические включения, которые вносятся в расплав, не оказывая на него рафинирующего влияния. Поэтому необходимо обеспечить высокую чистоту по вредным примесям в лигатурах Ni-РЗМ.

Необходимость введения РЗМ в виде лигатур Ni-РЗМ в никелевые жаропрочные сплавы обусловлена тем, что плотность РЗМ заметно ниже плотности жаропрочных никелевых сплавов. Поэтому при введении РЗМ в чистом виде его рафинирующее воздействие на сплав ослабевает за счет того, что РЗМ остается на поверхности, не проникая в глубину расплава, и тем самым уменьшается доля расплава, подвергающаяся рафинированию. Введение РЗМ в виде лигатур Ni-РЗМ позволяет рафинировать расплав по всему объему, поскольку плотность лигатуры Ni-РЗМ близка к плотности сплава.

Поверхность практически всех РЗМ при комнатной температуре на воздухе почти мгновенно окисляется, и поэтому при рафинировании посредством введения РЗМ в чистом виде в расплав происходит загрязнение очищаемого расплава кислородом. Вместе с тем РЗМ, связанные в виде лигатуры с никелем, на воздухе не окисляются.

Кроме того, лигатуры Ni-РЗМ активно применяются при переработке отходов жаропрочных никелевых сплавов, которые образуются на моторостроительных и ремонтных заводах и имеют повышенную загрязненность вредными примесями. Известен способ производства лигатуры на основе никеля и легкоплавких компонентов: магния и алюминия. Способ включает загрузку в тигель, нагрев, расплавление магния и никеля и разливку расплава. Нагрев смеси исходных компонентов производится в индукционной печи до тех пор, пока смесь не перейдет в состояние расплава, затем производится разливка в изложницы и охлаждение до затвердевания (US 3794484 A, 26.02.1974).

Основной недостаток данного способа заключается в том, что выплавка лигатур проводится в открытой атмосфере, а это значит, происходит взаимодействие расплава с кислородом и азотом воздуха.

Также известен способ получения лигатур, разработанный ОАО «Гиредмед» никель-иттрий (20-25%), никель-лантан (20-25%), включающий сплавление компонентов в дуговой печи с нерасходуемым вольфрамовым электродом и медным водоохлаждаемым кристаллизатором в атмосфере аргона (http://rusnanonet.ru/goods/43125, 19.03.2014).

Основной недостаток данного способа заключается в том, что в дуговых печах отсутствует индукционное перемешивание, вследствие чего не может быть достигнуто равномерное распределение легирующего элемента, как во время выплавки в индукционных печах.

Наиболее близким аналогом является способ получения лигатуры на основе никеля и магния с добавкой церия в индукционной печи на воздухе с использованием флюса. В тигель загружается магний, после полного расплавления магния порционно добавляется никель до достижения заданного химического состава (RU 2347836 C1, 27.02.2009).

Данный способ не может обеспечить стабильное качество лигатур из-за загрязнения расплава примесями флюса. Отсутствие дегазации никелевого расплава, присущее всем описанным известным способам, приводит к повышенным содержаниям в лигатуре газов кислорода и азота и примесей цветных металлов, которые являются вредными примесями в никелевых жаропрочных сплавах. Кроме того, высокое сродство РЗМ к кислороду приводит к их окислению при более продолжительном воздействии температуры. При использовании такой лигатуры в производстве никелевых жаропрочных сплавов происходит дополнительное внесение в сплав вредных примесей и уменьшение рафинирующего воздействия РЗМ, что негативно влияет на качество получаемых сплавов.

В предложенном способе получения лигатуры Ni-РЗМ компонент РЗМ вводится на дегазированный расплав никеля в вакууме или инертной атмосфере и не взаимодействует с кислородом и азотом воздуха. Кроме того, РЗМ быстро растворяется, в отличие от известных способов, в которых компонент изначально нагревается в тигле или кристаллизаторе отдельно, либо вместе с никелем. Задачей предложенного изобретения является разработка способа, позволяющего получить лигатуры никель-РЗМ с высокой степенью чистоты и равномерным распределением компонентов по объему.

Техническим результатом является обеспечение низкого содержания в лигатуре вредных примесей (кислорода, серы, азота, примесей цветных металлов: свинца, висмута, сурьмы, олова, цинка и др.), улучшение рафинирующего действия лигатуры и обеспечение точного расчета количества лигатуры, необходимого для рафинирования сплавов.

Указанный технический результат достигается за счет того, что в предложенном способе получения лигатуры никель-редкоземельный металл расплавляют один из компонентов, выдерживают полученный расплав, смешивают никель и редкоземельный металл, производят индукционное перемешивание расплава, его разливку и охлаждение образующегося из расплава слитка, при этом расплавляют никель в вакууме в инертном тигле индукционной печи, полученный расплав нагревают до температуры 1500-1700°C и выдерживают до его дегазации в плавильной камере под вакуумом, после чего снижают температуру расплава никеля до 1400-1550°C, в вакууме или атмосфере инертного газа порционно добавляют в него редкоземельный металл и производят индукционное перемешивание расплава.

В качестве инертного газа можно использовать аргон.

При наличии влаги никель желательно предварительно просушить в печи электросопротивления при температуре от 200 до 300°C в течение 2-х часов.

В зависимости от вида РЗМ и процентного соотношения компонентов в получаемой лигатуре никель можно расплавить в инертном тигле, состоящем из, по меньшей мере, одного компонента, выбранного из группы: оксид иттрия, оксид циркония, оксид алюминия, оксид гафния и оксид магния.

При выплавке лигатур никель-эрбий, никель-иттрий, никель-самарий, никель-церий, никель-лантан, никель-диспрозий во избежание интенсивного испарения РЗМ после снижения температуры расплава никеля до 1400-1550°C в плавильную камеру целесообразно напустить аргон высокой чистоты до давления от 2,67 до 53,33 КПа.

Во избежание окисления в атмосфере воздуха охлаждение образующегося из расплава слитка можно производить при закрытой печи не менее 6-и часов.

Способ осуществляется следующим образом.

Для получения лигатуры используют никель и один из редкоземельных металлов: неодим, эрбий, церий, празеодим, гадолиний, лантан, иттрий, самарий или диспрозий.

Предварительно измельченные РЗМ и никель навешивают согласно требуемому составу. Если никель содержит влагу, его необходимо предварительно просушить в печи электросопротивления при температуре от 200 до 300°C в течение 2 часов. Просушенный никель загружают в инертный тигель индукционной печи, оборудованной загрузочным устройством для введения РЗМ в процессе плавки, вакуумметром для измерения остаточного давления воздуха в плавильной камере и термопарой погружения для измерения температуры расплава.

В зависимости от вида РЗМ и процентного соотношения компонентов в лигатуре в качестве инертного тигля можно применять тигель, состоящий из, по меньшей мере, одного компонента, выбранного из группы: оксид иттрия, оксид циркония, оксид алюминия, оксид гафния и оксид магния. Состав тигля подбирается исходя из того, чтобы сродство металла(-ов) к кислороду в условиях плавки, входящего(-их) в оксид(-ы), из которого(-ых) изготовлен тигель, превышало сродство компонентов лигатуры к кислороду. При этом стоит отметить, что при небольшом количестве РЗМ в лигатуре взаимодействие РЗМ с материалом тигля незначительное, в связи с чем материал тигля выбирается исходя из его стоимости. После загрузки камеру печи закрывают, производят откачку воздуха до остаточного давления не более 5,32 Па (40 мкм) и расплавляют никель. Расплав доводят до температуры 1500-1700°C и выдерживают в плавильной камере под вакуумом до его дегазации приблизительно 5-20 минут.

Момент прекращения испарения определяется с помощью вакуумметра, который регистрирует восстановление низкого давления в плавильной камере. Вышеуказанная температура позволяет произвести дегазацию расплава и испарение примесей цветных металлов и вместе с тем не допустить избыточное испарение никеля и обеспечить минимальное разрушающее воздействие на тигель. Во время выдержки из расплава испаряются кислород, азот и примеси цветных металлов, являющихся вредными для никелевых жаропрочных сплавов.

Перед введением РЗМ температуру расплава никеля снижают до 1400-1550°C, поскольку при данной температуре никель имеет достаточную вязкость для того, чтобы введение РЗМ не приводило к разбрызгиванию расплава.

При выплавке лигатур никель-эрбий, никель-иттрий, никель-самарий, никель-церий, никель-лантан, никель-диспрозий в плавильную камеру после выдержки напускают аргон высокой чистоты до давления от 2,67 до 53,33 КПа (от 20 до 400 мм рт.ст.). Поскольку РЗМ, входящие в состав вышеперечисленных лигатур, имеют высокую упругость насыщенного пара, при низком давлении или вакууме они обладают склонностью к интенсивному испарению. В связи с этим возникает необходимость создавать в камере давление за счет напуска инертного газа, например аргона.

Выплавка лигатур никель-неодим, никель-празеодим, никель-гадолиний проводится в вакууме.

Во избежание разбрызгивания и кипения расплава РЗМ добавляют порционно в зависимости от добавляемого количества, а также от плотности и температуры плавления РЗМ.

На протяжении всего процесса плавки осуществляется дегазация кислорода и азота и удаление из расплава примесей цветных металлов (Sn, Pb, Bi, Sb, Zn и др.) за счет низкого давления в плавильной камере.

После введения необходимого количества РЗМ производят индукционное перемешивание расплава, что обеспечивает равномерное распределение компонентов по всему объему слитка, и приступают к разливке в инертные керамические формы или стальные трубы.

Для предотвращения окисления в атмосфере воздуха охлаждение образующегося из расплава слитка лучше производить при закрытой печи не менее 6-и часов.

Пример 1

Для приготовления лигатуры никель-эрбий (67 мас. % никеля, 33 мас. % эрбия) в качестве шихты использовали никель катодный H1У и эрбий кальциетермический ЭрМ-2. Для выплавки лигатуры применяли автоматизированную вакуумную индукционную плавильно-разливочную установку ВИАМ 2002 с инертным тиглем. Никель в количестве 2,815 кг загрузили в печь, после чего печь закрыли и произвели откачку воздуха до давления 8,1 мкм. Начали нагрев. После расплавления довели температуру до 1570°C и выдержали 5 минут. Далее в плавильную камеру напустили аргон до давления 45 кПа и добавили эрбий в количестве 1,515 кг в две стадии. После каждой стадии расплав выдерживали до полного растворения эрбия. После введения всего количества эрбия произвели перемешивание расплава за счет индукции и приступили к сливу в стальную трубу диаметром 70 мм. Температура перед сливом составляла 1440°C.

Химический состав лигатуры исследовали на атомно-эмиссионном анализаторе Varian. Содержание примесей цветных металлов определяли на масс-спектрометре X-Series. Содержание S, C, O, N определяли на газоанализаторах Leco. Результаты химического анализа полученной лигатуры приведены в таблице 1.

Пример 2

Для приготовления лигатуры никель-неодим (67 мас. % никеля, 33 мас. % неодима) в качестве шихты использовали никель карбонильный ДНК-1 и неодим кальциетермический НМ-1. Для выплавки лигатуры применяли вакуумную индукционную печь УГШФ-У с инертным тиглем. Никель в количестве 4,650 кг загрузили в печь, после чего печь закрыли, произвели откачку воздуха до давления 10,7 мкм и начали нагрев. После расплавления довели температуру до 1600°C и выдержали 5 минут. Далее охладили расплав до образования корочки и добавили неодим в количестве 2,500 в 3 стадии, после каждой из которых расплав выдерживали до полного растворения неодима. После полного введения неодима произвели перемешивание расплава за счет индукции и приступили к сливу в керамическую форму. Температура перед сливом составляла 1480°C. Результаты химического анализа представлены в таблице 2.

Пример 3

Для приготовления лигатуры со следующим составом никель-иттрий (75 мас. % никеля, 25 мас. % иттрия) в качестве шихты использовали никель карбонильный ДНК-1 и иттрий кальциетермический ИтМ-1. Для выплавки лигатуры применяли вакуумную индукционную печь УППФ-У с инертным тиглем. Никель в количестве 4,550 кг загрузили в печь, после чего печь закрыли, произвели откачку воздуха до давления 8,7 мкм и начали нагрев. После расплавления довели температуру до 1590°C и выдержали 5 минут. Далее в плавильную камеру напустили аргон до давления 48 КПа, охладили расплав до образования корочки и добавили иттрий в количестве 1,600 в 2 стадии, после каждой из которых расплав выдерживали до полного растворения иттрия. После полного введения иттрия произвели перемешивание расплава за счет индукции и приступили к сливу в керамическую форму. Температура перед сливом составляла 1510°C. Результаты химического анализа представлены в таблице 3.

Результаты химического анализа показывают, что лигатуры, полученные по предложенному способу, имеют низкие содержания вредных примесей, которые достигаются за счет технологических отличий предлагаемого способа от прототипа.

Поскольку полученные лигатуры имеют низкие содержания кислорода, азота и серы, РЗМ, входящий в ее состав, практически не связан с ними в тугоплавкие включения. Вследствие этого при введении лигатуры в никелевые жаропрочные сплавы практически вся масса РЗМ оказывает рафинирующее воздействие. Кроме того, введение полученных лигатур практически исключает загрязнение сплава вредными примесями цветных металлов. В связи с изложенным можно заключить, что использование лигатур, полученных предложенным способом, позволяет рассчитать необходимое для рафинирования сплавов количество лигатуры с максимальной точностью.

Источник поступления информации: Роспатент

Показаны записи 271-280 из 367.
29.03.2019
№219.016.f154

Способ получения композиционного материала

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида Nb. Может быть использовано при изготовлении деталей для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок, в...
Тип: Изобретение
Номер охранного документа: 0002393060
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f185

Способ получения композиционного материала

Изобретение относится к получению тугоплавких, стойких к удару композиционных материалов с интерметаллидной матрицей, используемых в авиационной, космической, судостроительной и других областях промышленности. Собирают пакет из слоев фольги из одного или более металлов, выбранных из группы Ti,...
Тип: Изобретение
Номер охранного документа: 0002394665
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f193

Препрег герметичного органопластика и изделие, выполненное из него

Изобретение относится к области создания конструкционных полимерных композиционных материалов на основе волокнистых наполнителей из арамидных нитей и полимерных связующих, которые могут использоваться в качестве герметичных обшивок сотовых панелей, а также монолитных деталей в машино-,...
Тип: Изобретение
Номер охранного документа: 0002395535
Дата охранного документа: 27.07.2010
29.03.2019
№219.016.f1e8

Способ получения изделия из деформируемого жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Для снижения напряжения течения металла при деформации заготовок и повышения выхода годного предложен способ...
Тип: Изобретение
Номер охранного документа: 0002387733
Дата охранного документа: 27.04.2010
29.03.2019
№219.016.f33a

Полимерная композиция

Изобретение относится к негорючим полимерным композициям, применяемым для местного упрочнения конструкций, в том числе трехслойных сотовых панелей, в зонах установки крепежа, заделки торцов и заполнения пустот в деталях из полимерных композиционных материалов, используемых на наземном, морском...
Тип: Изобретение
Номер охранного документа: 0002330050
Дата охранного документа: 27.07.2008
29.03.2019
№219.016.f34a

Фенолоформальдегидное связующее, препрег на его основе и изделие, выполненное из него

Предлагаемое изобретение относится к фенолоформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий интерьера пассажирских самолетов, в судо-, автомобилестроении и железнодорожном транспорте. Предложены: фенолоформальдегидное...
Тип: Изобретение
Номер охранного документа: 0002333922
Дата охранного документа: 20.09.2008
29.03.2019
№219.016.f646

Состав для защитного покрытия

Изобретение относится к полимерным составам для получения защитных покрытий на основе эпоксидных связующих, для защиты конструкций из различных металлов и полимерных композиционных материалов. Состав включает: эпоксидную диановая смолу, полиамидный отвердитель, наполнители - мелкодисперсный...
Тип: Изобретение
Номер охранного документа: 0002402585
Дата охранного документа: 27.10.2010
29.03.2019
№219.016.f64b

Препрег антифрикционного органопластика и изделие, выполненное из него

Изобретение относится к области производства металлополимерных антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Препрег антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002404202
Дата охранного документа: 20.11.2010
29.03.2019
№219.016.f659

Способ получения жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к получению жаропрочных никелевых сплавов, и может быть использовано для изготовления сварных корпусов, кожухов высоконагруженных деталей авиационных газотурбинных двигателей. Способ включает расплавление в вакууме шихтовых материалов,...
Тип: Изобретение
Номер охранного документа: 0002404273
Дата охранного документа: 20.11.2010
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
Показаны записи 271-280 из 338.
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebc

Способ изготовления штамповок дисков из слитков высокоградиентной кристаллизации из никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, полученных методом высокоградиентной кристаллизации, работающих при температурах выше 600°С, в частности дисков ГТД. Предлагаемый способ включает вакуумно-индукционную выплавку,...
Тип: Изобретение
Номер охранного документа: 0002389822
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
+ добавить свой РИД