×
27.06.2015
216.013.5a5d

Результат интеллектуальной деятельности: ТЕПЛОФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОЦИЛИНДРИЧЕСКИМ КОНЦЕНТРАТОРОМ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к гелиотехнике. Теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения состоит из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника (ФЭП), расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, при этом солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется предложенной системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной d из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора. Изобретение обеспечивает работу солнечного фотоэлектрического модуля при высоких концентрациях и равномерное освещение ФЭП, получение на одном ФЭП технически приемлемого напряжения (12 В и выше), нагрев проточного теплоносителя, повышение КПД преобразования и снижение стоимости вырабатываемой энергии. 4 ил.
Основные результаты: Теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения, состоящий из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, отличающийся тем, что солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной d из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора, X=(f-Y)/tgα, d=lsinξ/sinα, ζ=π/2+φ, X=dsinβ, Y=f-Хtgφ, l=dsin(β-φ)/sinξ, Х=0, Y=Y+dcosβ, l=dsinβ/cosφ, Y=R/4f, K=R/d,где α - угол (в зоне рабочего профиля концентратора) между уровнем ординаты в точке координат Х, Y и отраженным от поверхности параболы с фокусным расстоянием f лучом, приходящим в фокальную область на ширине d, расположенной на плоском фотоэлектрическом приемнике шириной d, где n выбирается из ряда целых чисел n=1, 2, 3,…,N;ξ - угол между координатной осью 0Y и лучом, отраженным от верхней точки координат Y, R концентратора, приходящим в нижнюю точку координат фотоприемника Х, Y;β - угол между фотоприемником и отрезком l (между нижней точкой координат фотоприемника Х, Y и фокусным расстоянием f параболы);β - угол между отрезком l (между верхней точкой координат фотоприемника Х, Y и фокусным расстоянием f параболы);φ - угол между лучом, отраженным от верхней точки координат Y, R концентратора и прямой Y=f, параллельной оси абсцисс;при этом значения параметров f, β, k выбираются в соответствии с граничными условиями, а геометрическая концентрация освещенности фотоэлектрического приемника К в интервалах координатных значений концентратора ΔХ=Х-X и в интервалах координатных значений фотоприемника (d-d) равна:K=(X-X)/(d-d).

Изобретение относится к гелиотехнике и конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами.

Известны солнечные модули с фотоэлектрическими преобразователями (ФЭП) и концентраторами солнечного излучения в виде параболоцилиндра (Д.С. Стребков, Э.В. Тверьянович. «Концентраторы солнечного излучения», глава 7 «Варианты стационарных параболоцилиндрических концентраторов» стр.180-215. Известные солнечные модули имеют концентраторы, создающие в плоскости фотоэлектрического преобразователя высокие концентрации в фокальной плоскости, достигающие 2000 крат и более, которые не могут быть использованы кремниевыми планарными ФЭП.

Известен солнечный фотоэлектрический модуль (прототип), состоящий из параболоидного концентратора типа «Фокон» и фотоэлектрический преобразователя, расположенного в фокальной плоскости с равномерным распределением концентрированного излучения (Арбузов Ю.Д., Бабаев Ю.А., Евдокимов В.М., Левинскас А.Л., Майоров ВА., Ясайтис Д-Ю.Ю. «Концентратор солнечной энергии». Патент СССР №1794254, 3.04.91).

Недостатками известного технического решения являются:

- снижение КПД планарными кремниевыми фотоэлектрическими приемниками ФЭП при высоких концентрациях солнечного излучения;

- расположение оптического фокуса на оси фотоэлектрического модуля и концентрическое распределение освещенности поверхности фотоприемника ограничивают конфигурацию и тип применяемых ФЭП (возможно применение только круглых планарных ФЭП);

- низкие напряжения на одном планарном ФЭП (~0,5 В) приводят к необходимости последовательной коммутации большого числа ФЭП в солнечном фотоэлектрическом модуле, чтобы набрать напряжение 12 В и выше, приемлемое для дальнейшего использования в электрических аккумуляторах, инверторах постоянного тока в переменный и т.п. Последовательная коммутация большого числа ФЭП уменьшает надежность системы, т.к. выход из строя одного элемента цепи приводит к отказу всей цепи.

Задачей предлагаемого изобретения является обеспечение работы солнечного фотоэлектрического модуля при высоких концентрациях и равномерного освещения фотоэлектрического приемника, получение на одном ФЭП (модуле) технически приемлемого напряжения (12 В и выше), нагрев проточного теплоносителя, повышение КПД преобразования и снижение стоимости вырабатываемой энергии.

В результате использования предлагаемого изобретения на линейчатой поверхности фотоэлектрического приемника высоковольтного фотоэлектрического преобразователя формируется равномерная освещенность концентрированного излучения и нагрев проточного теплоносителя.

Вышеуказанный технический результат достигается тем, что теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения, состоящий из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, отличается тем, что солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной do из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора, Xn=(f-Yn)/tgαn, dn=lвsinξo/sinαn, ζo=π/2+φ, Xн=dosinβв, Yн=f-Хнtgφ, lв=dosin(βн-φ)/sinξo, Хв=0, Yв=Yн+dcosβн, lн=dosinβв/cosφ, Yа=R2/4f, Kг=R/do,

где αn - угол (в зоне рабочего профиля концентратора) между уровнем ординаты в точке координат Хn, Yn и отраженным от поверхности параболы с фокусным расстоянием f лучом, приходящим в фокальную область на ширине dn, расположенной на плоском фотоэлектрическом приемнике шириной do, где n выбирается из ряда целых чисел n=1, 2, 3,…,N;

ξо - угол между координатной осью 0Y и лучом, отраженным от верхней точки координат Ya, R концентратора, приходящим в нижнюю точку координат фотоприемника Хн, Yн;

βн - угол между фотоприемником и отрезком lн (между нижней точкой координат фотоприемника Хн, Yн и фокусным расстоянием f параболы);

βв - угол между отрезком lв (между верхней точкой координат фотоприемника Хв, Yв и фокусным расстоянием f параболы);

φ - угол между лучом, отраженным от верхней точки координат Ya, R концентратора и прямой Y=f, параллельной оси абсцисс;

при этом значения параметров f, βв, k выбираются в соответствии с граничными условиями, а геометрическая концентрация освещенности фотоэлектрического приемника Kn в интервалах координатных значений концентратора ΔХnn-Xn-1 и в интервалах координатных значений фотоприемника (dn+1-dn) равна:

Kn=(Xn+1-Xn)/(dn+1-dn).

Сущность изобретения поясняется фиг.1, 2, 3, 4.

На фиг.1 представлена схема конструкции теплофотоэлектрического модуля с параболоцилиндрическим концентратором с равномерным распределением концентрированного излучения на линейчатой поверхности теплофотоэлектрического приемника.

На фиг.2 представлен ход лучей от параболоцилиндрического концентратора до теплофотоэлектрического приемника.

На фиг.3 представлена форма отражающей поверхности параболоцилиндрического концентратора.

На фиг.4 представлен график распределения концентрации освещенности на фотоэлектрической части теплофотоэлектрического приемника модуля от ширины фокальной области.

Фотоэлектрический модуль на фиг.1 состоит из параболоцилиндрического концентратора 1, закрепленного на стойках 2, который создает фокальную область на поверхности теплофотоэлектрического приемника 3 высотой ho, длиной L, и устройства протока теплоносителя 4 со штуцерами для входа и выхода теплоносителя 5, закрепленными на стойках 6.

Параболоцилиндрический концентратор 1 теплофотоэлектрического модуля на фиг.2 с рабочим профилем концентрирует солнечное излучение в фокальной области на поверхности теплофотоэлектрического приемника 3 шириной do, длиной L; лучи от верхней части концентратора приходят на нижнюю часть, а лучи от нижней части концентратора приходят на верхнюю часть теплофотоэлектрического приемника 3.

На основании приведенных формул произведен расчет формы отражающей поверхности концентратора - график зависимости Х(Y) (фиг.3).

На фиг.4 представлен график распределения концентрации освещенности на поверхности линейчатого фотоэлектрического приемника 3 от ширины фокальной области (от 0 до ho) в относительных единицах (от 0 до 1).

При уменьшении ширины do фотоэлектрического приемника 3, т.е. при уменьшении площади фотоэлектрического преобразователя происходит увеличение концентрации освещенности фотоэлектрического приемника 3.

Таким образом, можно изменять концентрацию освещенности фотоэлектрического приемника 3, не меняя габаритных размеров концентратора 1 и выбранный тип фотоэлектрических преобразователей.

Из приведенных характеристик видно, что изменение концентрации освещенности по ширине фокальной области теплофотоэлектрического преемника 2 не превышает 40%, что не влияет на электрофизические и тепловые характеристики солнечного модуля.

Работает солнечный теплофотоэлектрический модуль с концентратором следующим образом.

Солнечное излучение попадает на поверхность параболоцилиндрического концентратора 1, отражается под углами наклона α, γ таким образом, чтобы они обеспечивали равномерную концентрацию лучей на фотоэлектрической части 3 теплофотоэлектрического приемника 2 модуля, выполненного в виде линейки шириной do и длиной L из скоммутированных высоковольтных фотоэлектрических преобразователей высотой do с устройством протока теплоносителя 4, выполненного в виде трубопровода с треугольным профилем, нагревая теплоноситель.

Регулируя скорость протока теплоносителя можно оптимизировать нагрев фотопреобразователей и теплоносителя, повышая КПД модуля.

Пример выполнения солнечного теплофотоэлектрического модуля с асимметричным параболоцилиндрическим концентратором.

Концентратор 1 с максимальным размером миделя Rмах=660 мм, высотой 315 мм выполнен из алюминиевого листа, закрепленного на стойках 2, толщиной 0,3 мм с зеркально отражающей внутренней поверхностью с рабочим профилем, обеспечивающим равномерную концентрацию лучей теплофотоэлектрического приемника 3 модуля на его фотоэлектрической части 3, выполненного в виде линейки шириной do=60 мм из скоммутированных высоковольтных ФЭП высотой ho=60 мм, длиной L=700 мм, и устройством охлаждения 4 со штуцерами для входа и выхода теплоносителя 5, закрепленными на стойках 6.

Концентрация освещенности на поверхности фотоэлектрической части 3 теплофотоэлектрического приемника 2 модуля составляет К=12 крат;

Таким образом, предложенный теплофотоэлектрический модуль солнечного концентрированного излучения с высоковольтными фотоэлектрическими преобразователями и параболоцилиндрическим концентратором 1 обеспечивает: достаточно равномерное распределение освещенности со средней концентрацией К=12 крат на фотоэлектрической части 3 теплофотоэлектрического приемника 2 модуля из последовательно-параллельно соединенных высоковольтных ФЭП, повышая напряжение и КПД преобразования солнечной энергии в электрическую; нагревая проточный теплоноситель устройства охлаждения 4, тем самым повышая общий КПД преобразования солнечной энергии теплофотоэлектрического модуля.

Теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения, состоящий из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника, расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, отличающийся тем, что солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной d из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора, X=(f-Y)/tgα, d=lsinξ/sinα, ζ=π/2+φ, X=dsinβ, Y=f-Хtgφ, l=dsin(β-φ)/sinξ, Х=0, Y=Y+dcosβ, l=dsinβ/cosφ, Y=R/4f, K=R/d,где α - угол (в зоне рабочего профиля концентратора) между уровнем ординаты в точке координат Х, Y и отраженным от поверхности параболы с фокусным расстоянием f лучом, приходящим в фокальную область на ширине d, расположенной на плоском фотоэлектрическом приемнике шириной d, где n выбирается из ряда целых чисел n=1, 2, 3,…,N;ξ - угол между координатной осью 0Y и лучом, отраженным от верхней точки координат Y, R концентратора, приходящим в нижнюю точку координат фотоприемника Х, Y;β - угол между фотоприемником и отрезком l (между нижней точкой координат фотоприемника Х, Y и фокусным расстоянием f параболы);β - угол между отрезком l (между верхней точкой координат фотоприемника Х, Y и фокусным расстоянием f параболы);φ - угол между лучом, отраженным от верхней точки координат Y, R концентратора и прямой Y=f, параллельной оси абсцисс;при этом значения параметров f, β, k выбираются в соответствии с граничными условиями, а геометрическая концентрация освещенности фотоэлектрического приемника К в интервалах координатных значений концентратора ΔХ=Х-X и в интервалах координатных значений фотоприемника (d-d) равна:K=(X-X)/(d-d).
ТЕПЛОФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОЦИЛИНДРИЧЕСКИМ КОНЦЕНТРАТОРОМ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ
ТЕПЛОФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОЦИЛИНДРИЧЕСКИМ КОНЦЕНТРАТОРОМ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ
ТЕПЛОФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОЦИЛИНДРИЧЕСКИМ КОНЦЕНТРАТОРОМ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ
ТЕПЛОФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С ПАРАБОЛОЦИЛИНДРИЧЕСКИМ КОНЦЕНТРАТОРОМ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 70.
13.01.2017
№217.015.762e

Параметрический резонансный генератор

Изобретение относится к электротехнике, в частности к резонансным преобразователям электрической энергии на основе параметрических резонансных генераторов. Задачей предлагаемого изобретения является увеличение мощности и снижение зависимости вырабатываемой электроэнергии параметрического...
Тип: Изобретение
Номер охранного документа: 0002598688
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7d51

Децентрализованная отопительно-вентиляционная система для животноводческих помещений

Изобретение относится к области оборудования для создания микроклимата в животноводческих помещениях, например в коровниках. Задачей предлагаемого изобретения является обеспечение нормативных параметров воздушной среды в животноводческих помещениях в различные периоды года. Технический...
Тип: Изобретение
Номер охранного документа: 0002600923
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d68

Способ аэробно-анаэробной обработки бесподстилочного навоза с получением биогаза, эффлюента, биошлама и устройство для его реализации

Изобретение относится к переработке бесподстилочного навоза с содержанием твердой фазы 6-10% в газообразный энергоноситель - биогаз с энергосодержанием не менее 20 МДж/м, обеззараженные стабилизированные продукты - жидкий обогащенный азотом сток - эффлюент с содержанием аммиачного азота не...
Тип: Изобретение
Номер охранного документа: 0002600996
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7dec

Способ приготовления композитного минерально-органического биотоплива третьего поколения

Изобретение относится к области производства биотоплив на основе возобновляемого органического сырья и может быть использовано для целей транспортной отрасли и в энергетике. Технический результат - увеличение эффективности использования органической массы водорослей при производстве...
Тип: Изобретение
Номер охранного документа: 0002600950
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e34

Устройство и способ усиления электрических сигналов (варианты)

Изобретение относится к электротехнике и может использоваться в усилителях мощности. Достигаемый технический результат - увеличение коэффициента усиления и снижение зависимости параметров усиления электрических сигналов от величины нагрузки. Устройство усиления электрических сигналов содержит...
Тип: Изобретение
Номер охранного документа: 0002601144
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f05

Способ определения всхожести семян сельскохозяйственных растений

Изобретение относится к области сельского хозяйства, в частности к области контроля качества и подготовки к заложению в почву семенного материала сельскохозяйственных растений и может быть использовано в отрасли полевого растениеводства. Способ определения всхожести семян сельскохозяйственных...
Тип: Изобретение
Номер охранного документа: 0002601055
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8982

Устройство для очистки молокопроводов доильных установок

Изобретение относится к сельскому хозяйству, в частности к устройствам для очистки молокопроводов доильных установок. Устройство содержит приводной элемент, жестко соединенный осью с вентилятором и очистителем, совершающим вращательно-поступательное движение в трубопроводе. Приводной элемент...
Тип: Изобретение
Номер охранного документа: 0002602607
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b8c6

Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения

Изобретение относится к гелиотехнике и к конструкции солнечных модулей с фотоэлектрическими и тепловыми приемниками солнечного излучения и концентраторами для получения электрической энергии и теплоты. Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения...
Тип: Изобретение
Номер охранного документа: 0002615242
Дата охранного документа: 04.04.2017
29.12.2017
№217.015.fbc8

Концентратор солнечной энергии

Изобретение может использоваться в гелиотехнике, в частности, в концентраторах солнечной энергии. Концентратор содержит симметричную отражающую поверхность, выполненную в виде фоклина, и прямоугольное выходное окно для размещения приемника излучения, совпадающее с фокальным пятном...
Тип: Изобретение
Номер охранного документа: 0002638096
Дата охранного документа: 11.12.2017
19.06.2019
№219.017.8489

Устройство для соединения и запирания дверных створок, расположенных одна за другой (варианты)

Устройство содержит замок, предназначенный для установки на наружной двери, и ответную часть замка, предназначенную для установки на внутренней двери. Ответная часть замка имеет корпус, соединенный с опорной пластиной, расположенной на дверном полотне внутренней двери со стороны охраняемого...
Тип: Изобретение
Номер охранного документа: 0002289008
Дата охранного документа: 10.12.2006
Показаны записи 71-73 из 73.
13.07.2019
№219.017.b38c

Установка экстракции воды из воздуха на базе солнечного модуля с параболоторическим концентратором и двигателем стирлинга

Изобретение относится к устройствам получения пресной воды из атмосферного воздуха с использованием возобновляемых источников энергии. Установка содержит корпус с окнами ввода и вывода воздуха, с размещенными внутри корпуса тепловым контуром с курсирующим хладагентом, конденсатором и...
Тип: Изобретение
Номер охранного документа: 0002694308
Дата охранного документа: 11.07.2019
30.10.2019
№219.017.dbb7

Гелиоэлектрическая установка

Изобретение относится к гелиотехнике и конструкции преобразователя солнечной энергии в тепловую с использованием механического привода электрогенератора и может применяться кроме электрогенерации в широком диапазоне отраслей и различных видов работ, где необходим механический привод как...
Тип: Изобретение
Номер охранного документа: 0002704380
Дата охранного документа: 28.10.2019
16.05.2023
№223.018.6119

Способ поддержания оптимального температурного режима работы солнечного модуля и устройство для его реализации

Изобретение относится к гелиотехнике и может быть использовано для электрификации инфраструктуры сельского хозяйства. Охлаждение фотоэлектрических элементов до оптимальной температуры осуществляют антигравитационным теплообменным устройством с капиллярным телом, конденсаторную часть которого...
Тип: Изобретение
Номер охранного документа: 0002747080
Дата охранного документа: 26.04.2021
+ добавить свой РИД