×
10.09.2013
216.012.67f6

ЛИТОЙ КОМПОЗИЦИОННЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к металлургии, в частности к получению литых композиционных сплавов для отливок ответственного назначения. Литой композиционный сплав на основе алюминиевой матрицы содержит включения интерметаллидных фаз состава AlX, AlX, AlX, где Х - Ti, Zr, V, Fe, Ni размером <10 мкм в количестве 5-20 об.%, высокопрочные эндогенные керамические наноразмерные частицы TiB, TiC, AlO размером <50 нм, полученные при введенные их в расплав в количестве 0,1-2,0% от его массы и армирующие дискретные керамические частицы со средним размером 14 мкм, полученные при введении их в расплав в количестве 1-5% от его массы. Способ включает смешивание порошков исходных компонентов, образующих при взаимодействии друг с другом и матричным алюминиевым расплавом эндогенные интерметаллидные и керамические наноразмерные частицы, с армирующими дискретными керамическими частицами и технологическими добавками, в качестве которых используют криолит NaAlF в количестве 0,1-0,2% и алюминиевый порошок в количестве до 30% от массы смеси, брикетирование полученной композиционной смеси, подогрев брикетов до температуры 300±10°С, ввод их в матричный расплав при температуре 850-900°С, выдержку расплава до разливки в течение 15-20 мин. Изобретение позволяет повысить трибологические свойства сплава при повышенных температурах. 2 н. и 1 з.п. ф-лы, 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к области металлургии и машиностроения и может быть использовано для получения антифрикционных композиционных сплавов, предназначенных для изготовления литых изделий, работающих в условиях сухого и абразивного изнашивания при повышенных температурах.

Известны составы и способы получения композиционных сплавов с алюминиевой матрицей, упрочненных дисперсными частицами. К числу таких способов относятся способы, основанные на методах порошковой металлургии, например способ, предусматривающий высокоэнергетическую обработку исходных порошков и их последующее горячее компактирование в пресс-форме (H.J. Brinkman, J. Duszczyk, L. Katgerman, Journal of Materials Research, V.I 4, N.11, 1999, pp.4246-4250). Однако такой способ имеет ограниченное применение, поскольку полученные изделия имеют высокую пористость и низкую макроплотность.

Известен состав и способ получения литого композиционного сплава механическим замешиванием дискретных тугоплавких частиц в расплав (Патент РФ №2186867, Канк Сук Бонг, А.В. Панфилов и др., приоритет 09.01.2001). Этот способ не исключает окисления и газонасыщения матричного сплава, что в конечном итоге не позволяет достичь стабильного уровня механических и триботехнических свойств. Кроме того, указанный способ требует применения сложного специализированного оборудования.

Известен способ синтеза литого композиционного сплава при продувке матричного расплава активными газами (N2, CH4, NH3), предусматривающий пропускание газовой смеси через расплав алюминия с помощью керамической трубки (US Patent No. 6343640, R.G. Reddy, B. Wu, Feb. 5, 2002). Недостатком метода синтеза композиционных сплавов при продувке расплава активными газами являются трудности, связанные с контролем заданного количества армирующей фазы и обеспечением ее высокого содержания в готовой композиции.

Известен способ получения литых композиционных сплавов замешиванием в расплав алюминиевого сплава солевых смесей, содержащих реакционно-активные компоненты (D. Zhao, X. Liu, Y. Liu, X. Bian, Journal of Materials Science, 2005, V. 40, N.16, pp.4365-4368). Сущность способа состоит в том, что при замешивании в расплав смеси солей KBF4, K2ZrF6 и K2TiF6 происходит взаимодействие алюминиевого расплава с солями с образованием армирующих частиц ZrB2 и TiB2. К недостаткам этого способа можно отнести сравнительно низкое количество образующейся эндогенной дисперсной фазы, неуправляемость процесса и экологическую небезопасность.

Наиболее близким к предлагаемому составу сплава и способу его получения, т.е. прототипом, является способ получения литого композиционного материала на основе алюминиевого сплава (например, АК12), упрочненного эндогенными включениями интерметаллидных фаз состава Al3X (где Х - легирующие добавки Ti, Zr, V, Fe, Ni) и экзогенными дискретными керамическими микро- и наноразмерными частицами (TiC, ZrC, B4C, SiC, Al2O3, ZrO2, BN, TiN), включающий смешивание порошка легирующего элемента с дискретными керамическими частицами, брикетирование полученной смеси и введение ее в расплав алюминия, выдержку расплава для образования упрочняющих интерметаллидных фаз, перемешивание и разливку (Патент РФ №2323991, А.В. Панфилов, Д.Н. Бранчуков, А.А. Панфилов, А.В. Петрунин и др., приоритет от 22.09.2006, дата выдачи 10.05.2008 г.).

Недостатком такого композиционного материала является то, что в качестве армирующих наполнителей используются в основном экзогенные частицы, а комплекс эндогенных наполнителей ограничен только интерметаллидными фазами состава Al3X. Такой подход зачастую не обеспечивает существенного повышения уровня эксплуатационных свойств по сравнению с базовым сплавом. Известно, что армирование осуществляется наиболее эффективно и, как следствие, наиболее полно реализуется необходимый комплекс свойств, при использовании широкого спектра именно эндогенных упрочняющих соединений, формирующихся в ходе экзотермических реакций между предварительно введенными исходными реакционно-активными компонентами непосредственно в расплаве, поскольку такие процессы обеспечивают достижение хорошей адгезионной связи между наполнителем и матрицей, обусловленной близким решеточным соответствием матрицы и синтезированных фаз.

Кроме того, с точки зрения оптимального взаимодействия фаз и формирования заданной структуры и свойств литых алюминиевых композиционных сплавов в идеале следует отдавать предпочтение тем дисперсным наполнителям (в первую очередь, эндогенным), которые способны одновременно выполнять как армирующую, так и модифицирующую функции. Для такого подхода есть все основания, так как в литературе по литейным композициям многократно отмечалась активная зародышеобразующая функция ряда дисперсных частиц при кристаллизации матрицы того или иного композита. Известно (Чернышева Т.А., Кобелева Л.И., Шебо П., Панфилов А.В. Взаимодействие металлических расплавов с армирующими наполнителями. - М.: Наука, 1993, 272 с.), что при кристаллизации композиций, армированных только экзогенными дисперсными частицами карбида кремния, первичные кристаллы α-алюминия не могут зарождаться на поверхности частиц, что обусловлено плохой смачиваемостью и теплофизическими характеристиками наполнителей. В композиционных сплавах, содержащих экзогенные и эндогенные частицы металлоподобных карбидов и боридов, зарождение дендритов α-алюминия происходит на поверхности частиц. То же наблюдается и в случаях, когда матричный расплав легирован элементами, образующими при кристаллизации тугоплавкие интерметаллидные фазы.

Частицы металлоподобных карбидов, боридов и интерметаллидов оказывают модифицирующее действие на литую структуру композитов, так как характеризуются меньшим несоответствием решеток, высоким химическим сродством к матрице и более высокой теплопроводностью. В результате они являются активными центрами кристаллизации. Следует также отметить, что введение в расплав керамических наполнителей способствует уменьшению дендритного параметра. Одной из причин этого уменьшения является эффект ограничения кристаллизующихся объемов из-за наличия на границах растущих зерен армирующих частиц.

Таким образом, целесообразным представляется развивать такие подходы к синтезу литых композиционных сплавов, которые основываются именно на комплексном армировании базовых сплавов наполнителями различной природы и размеров, в первую очередь, эндогенными и способными выполнять модифицирующую функцию (TiB2, TiC, Al2O3, Al3Ti, AlTi и др.).

Техническим эффектом настоящего изобретения является получение литого композиционного сплава на базе стандартных алюминиевых сплавов, обладающего повышенными механическими и триботехническими свойствами и обеспечивающего стабильную эксплуатацию изделий при повышенных температурах.

Технический эффект достигается тем, что в литом композиционном сплаве на базе стандартных алюминиевых сплавов, содержащем включения интерметаллидных фаз размером <10 мкм в количестве 5-20 об.%, высокопрочные керамические наноразмерные частицы размером <50 нм в количестве 0,1-2,0% от массы расплава и армирующие дискретные керамические частицы со средним размером 14 мкм, введенные в расплав алюминиевого сплава в количестве 1-5% от его массы, в качестве интерметаллидных включений содержатся включения интерметаллидных фаз состава Al3X, AlX, AlX3, где Х - Ti, Zr, V, Fe, Ni, в качестве армирующих дискретных керамических частиц содержатся экзогенные частицы ZrC, B4C, SiC, ZrO2, BN, TiN и эндогенные частицы TiB2, TiC, Al2O3, формируемые в объеме расплава в ходе экзотермических реакций между предварительно введенными исходными реакционно-активными компонентами, в качестве высокопрочных керамических наноразмерных частиц содержатся эндогенные частицы TiB2, TiC, Al2O3.

Для формирования в объеме матричного сплава эндогенных упрочняющих фаз в качестве исходных компонентов используются такие порошковые частицы, при взаимодействии которых друг с другом и с матричным алюминиевым расплавом проходят интенсивные экзотермические реакции, приводящие к образованию новых эндогенных армирующих и модифицирующих фаз TiB2, TiC, Al2O3, Al3X, AlX, AlX3 (где Х - Ti, Zr, V, Fe, Ni). Дополнительное регулирование физико-механических и эксплуатационных свойств композиционного сплава в широких пределах может осуществляться за счет добавления в состав исходного порошкового брикета экзогенных керамических частиц. Следует отметить, что одним из важнейших условий при получении предлагаемых литых композиционных сплавов является высокая экзотермичность реакций химического взаимодействия исходных компонентов порошкового брикета, поскольку для обеспечения смачивания и усвоения экзогенных частиц необходимо создание градиента температур.

Предлагаемый способ приготовления литого композиционного сплава осуществляется следующим образом. Порошки исходных компонентов подвергают термической обработке (порошки керамических частиц прокаливают при 650-700°С в течение 1-1,5 часов в печной атмосфере, металлические порошки просушивают при 100-150°С в течение 1-1,5 часов) для удаления адсорбированной влаги и активации поверхности частиц. Затем порошки исходных реакционно-активных компонентов, армирующие дискретные керамические частицы и технологические добавки, в качестве которых используют криолит Na3AlF6 в количестве 0,1-0,2% и алюминиевый порошок в количестве до 30% от массы порошковой смеси, подвергают смешиванию в шаровой мельнице в течение 30-40 мин и прессуют в брикеты. Брикеты подогревают до 300±10°С и вводят в матричный расплав, перегретый до 850-900°С. После ввода брикетов расплав выдерживают в течение 15-20 мин для завершения протекания реакций синтеза эндогенных армирующих фаз с последующим перемешиванием для устранения структурной неоднородности и разливают. Экспериментально установлено, что ввод брикетов при температуре ниже 850°С не обеспечивает полного протекания реакций синтеза эндогенных упрочняющих фаз и, как следствие, необходимого уровня смачивания экзогенных керамических частиц. При температурах расплава свыше 900°С происходит интенсификация экзотермических реакций, приводящая к деградации экзогенной керамической фазы за счет взаимодействия с жидким алюминием. Таким образом, оптимальная температура для ввода брикетов в расплав должна находиться в интервале 850-900°С. Минимальное время выдержки, необходимое для ввода в алюминиевый расплав брикета и достаточное для завершения экзотермических реакций, составляет 15-20 минут. Разливка сплава до истечения этого времени нежелательна, поскольку при этом в структуре сплава могут присутствовать не прореагировавшие компоненты брикетов.

Для интенсификации и ускорения распада порошковых композиционных брикетов в матричном расплаве в состав исходной смеси добавляется алюминиевый порошок в количестве до 30% от массы смеси. Увеличение поверхности контакта порошковых наполнителей с алюминием и возрастание количества жидкой фазы, участвующей в реакциях in-situ, облегчает усвоение брикета расплавом и тем самым уменьшает время выдержки композиции до разливки.

Для активизации реакций синтеза эндогенных фаз предусмотрено добавление в состав исходной порошковой композиционной смеси криолита Na3AlF6 в количестве 0,1-0,2 масс.%, который растворяет оксидные пленки, присутствующие в расплаве и на поверхности частиц алюминиевого порошка.

Сопоставительный анализ заявляемого решения с прототипом показывает, что предлагаемый литой композиционный сплав и способ его получения отличаются от известного тем, что:

- исключается ввод экзогенных наноразмерных частиц, использование которых увеличивает себестоимость композиционных сплавов и осложняет процесс; кроме того, по литературным данным, ввод готовых наночастиц в расплав вызывает трудности технологического характера. Более предпочтительным является формирование эндогенных наноразмерных фаз непосредственно в расплаве в ходе реакций между предварительно введенными исходными компонентами, которые будут выполнять также роль модификаторов, причем как для матрицы, так и для образующихся интерметаллидных соединений;

- новый сплав дополнительно содержит эндогенные армирующие и модифицирующие фазы, при этом номенклатура используемых эндогенных фаз расширяется, включая не только интерметаллидные соединения типа Al3X: TiB2, TiC, Al2O3, Al3X, AlX, AlX3 (где Х - Ti, Zr, V, Fe, Ni);

- расширяется номенклатура базовых матричных сплавов; в качестве матричных сплавов взамен АК12 (система Al-Si) предлагается использовать литейные алюминиевые сплавы, содержащие магний (системы Al-Mg, Al-Si-Mg, Al-Si-Cu-Mg и др.), которые более технологичны с точки зрения получения литых композиционных сплавов, поскольку присутствие магния в расплаве облегчает ввод в расплав и улучшает смачивание и усвоение экзогенной дисперсной фазы;

- для интенсификации распада порошковых брикетов в расплаве и уменьшения времени выдержки композиции до разливки в исходную порошковую смесь дополнительно добавляется алюминиевый порошок, а для активизации реакций синтеза эндогенных фаз предусмотрено использование криолита Na3AlF6.

Подогрев брикетов до 300±10°С перед вводом и добавление алюминиевого порошка позволяют интенсифицировать взаимодействие компонентов с расплавом и за счет этого сократить время выдержки композиции перед разливкой до 15-20 мин.

Изобретение может быть проиллюстрировано следующими примерами.

По вышеизложенной технологии были приготовлены литые композиционные сплавы (табл.1) на базе стандартного сплава АК12М2МгН системы Al-Si-Cu-Mg-Ni.

В табл.1 также представлены численные значения твердости НВ образцов алюмоматричных композиционных сплавов (АКС) в литом состоянии и результаты испытаний образцов АКС на трение и износ в сравнении с матричным сплавом. Результаты испытаний свидетельствуют о повышении твердости АКС на 35-40% при нормальной температуре и до 30% при температуре 200°С. Твердость образцов возрастает с увеличением суммарной объемной доли армирующей фазы с 2,5 до 5%.

Трибологические свойства образцов АКС оценивали по величине коэффициента трения и интенсивности изнашивания. Установлено, что образцы из АКС при температуре 20°С имеют коэффициент трения в 5-7 раз ниже, а износостойкость в 10-12 раз выше по сравнению с базовым сплавом. Достигнутые показатели твердости превосходят аналогичные показатели прототипа на 40-45%, а износостойкость новых сплавов в сравнении с прототипом выше в 2-2,5 раза.

В табл.2 приведен сравнительный анализ степени усвоения исходного порошкового брикета при различном составе композиции и времени выдержки композиции до разливки. Видно, что наибольшую степень усвоения армирующих компонентов, а следовательно, и меньший расход армирующего наполнителя обеспечивает предлагаемый способ получения литого композиционного сплава, основанный на использовании в составе брикета криолита в качестве технологической добавки.

Высокий уровень трибологических свойств АКС позволяет рекомендовать их для широкого применения в трибосопряжениях различного технологического оборудования, автомобильной, дорожно-строительной технике и других областях взамен традиционных антифрикционных сплавов на медной, цинковой и алюминиевой основе.

Таблица 2
Степень усвоения исходного брикета в зависимости от состава композиции и времени выдержки до разливки
Состав композиции Содержание криолита в брикете, % Время выдержки, мин Степень усвоения, %
Состав-прототип AK12 + 3% Ti + 0,2% SiC(нано) + 5% SiC(14 мкм) 0 30 80-85
Предлагаемый состав (без криолита) АК12М2МгН + 1,0% [TiO2+В] + 2,0% Ti + 1,5% SiC 0 15 55-60
0 30 60-65
Предлагаемый состав (с криолитом) АК12М2МгН + 1,0% [TiO2+В] + 2,0% Ti + 1,5% SiC 0,05 15 70-75
0,1 15 92-95
0,2 15 92-95
0,3 15 92-95

Источник поступления информации: Роспатент

Показаны записи 1-10 из 77.
27.05.2013
№216.012.43e6

Режущий инструмент

Изобретение относится к машиностроению и может быть использовано в металлорежущих инструментах при обработке различных деталей. Режущий инструмент содержит режущие элементы, расположенные с осевым смещением на цилиндрической поверхности дисков. По меньшей мере, два диска выполнены V-образной...
Тип: Изобретение
Номер охранного документа: 0002482959
Дата охранного документа: 27.05.2013
27.07.2013
№216.012.593a

Способ сверления отверстий в заготовках

Изобретение относится к машиностроению и может быть использовано при сверлении заготовок. Способ включает одновременное вращение и осевую подачу сверла и перемещение заготовки. Заготовке сообщают вращение в направлении, противоположном направлению вращения сверла. Вращение сверла осуществляют с...
Тип: Изобретение
Номер охранного документа: 0002488463
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.6705

Изложница для получения литых протекторов

Изобретение относится к металлургии. Изложница содержит основание, боковые стенки, водоохлаждаемый поддон и кожух. Кожух установлен относительно боковых стенок изложницы с теплоизоляционным зазором. Зазор увеличивается по высоте изложницы в соответствии с выражением δ=(0,3-0,4)·h, где δ -...
Тип: Изобретение
Номер охранного документа: 0002492020
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67f4

Комплексный модификатор для заэвтектических силуминов

Изобретение относится области цветной металлургии, в частности к модифицированию заэвтектических силуминов. Модификатор для обработки расплава заэвтектических силуминов содержит, мас.%: фосфористая медь - 0,5-2,0, интерметаллид титана АlТi - 0,5-2,0, алюминий - остальное. Применение данного...
Тип: Изобретение
Номер охранного документа: 0002492259
Дата охранного документа: 10.09.2013
27.12.2013
№216.012.90d5

Композиция для защитных покрытий

Изобретение относится к композиции для защитных покрытий и может применяться для антикоррозионной, термической и антисептической защиты металлических, бетонных и деревянных поверхностей и для их ремонта, а также для увеличения прочности на удар поверхности, повышения ее гидрофобности и...
Тип: Изобретение
Номер охранного документа: 0002502770
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.91ef

Способ генерации перепутанных поляритонов

Способ относится к генерации перепутанных поляритонов. Способ генерации перепутанных поляритонов заключается в том, что выбираются параметры схемы атомно-оптического взаимодействия в допированной среде и за счет внешнего оптического управления происходит генерации перепутанных поляритонов....
Тип: Изобретение
Номер охранного документа: 0002503052
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.97ea

Способ переработки шламов гальванических производств

Изобретение относится к переработке промышленных отходов предприятий металлургии и машиностроения. Способ переработки шламов гальванических производств включает выщелачивание тяжелых цветных металлов раствором серной кислоты с последующим отделением твердой фазы из раствора выщелачивания...
Тип: Изобретение
Номер охранного документа: 0002504589
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9eb3

Металломатричный композит

Изобретение относится к композиционным материалам, в частности к металломатричным композитам, и может быть использовано при производстве подшипников скольжения. Металломатричный композит содержит, мас.%: сурьма - 10,0-12,0; медь - 0,5-1,5; карбид кремния - 1,0-15,0; углеродные нанотрубки -...
Тип: Изобретение
Номер охранного документа: 0002506335
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b343

Способ электрошумовой диагностики высоковольтного оборудования

Использование: изобретение относится к технике высоких напряжений, в частности к диагностике высоковольтных аппаратов по параметрам электрических шумов, вызванных частичными разрядами. Сущность: электромагнитное поле частичных разрядов в изоляции воспринимают индуктивным и емкостным датчиками,...
Тип: Изобретение
Номер охранного документа: 0002511607
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.bfb7

Способ определения микотоксинов в продуктах животного и растительного происхождения

Предложен экспрессный, безопасный и экономичный способ определения микотоксинов в продуктах животного и растительного происхождения. Определение проводят из 2 г пробы, очищенный экстракт по QuEChERS делят на три части по 2 мл и используют в качестве диспергатора 300 мкл хлороформа в...
Тип: Изобретение
Номер охранного документа: 0002514828
Дата охранного документа: 10.05.2014
Показаны записи 1-10 из 80.
27.04.2013
№216.012.3b71

Способ испытания электрических машин постоянного тока

Изобретение относится к электротехнике и предназначено для испытания электрических машин постоянного тока. Способ испытания электрических машин постоянного тока методом взаимного нагружения, при котором якорные обмотки двигателей соединяются параллельно и подключаются к регулируемому источнику...
Тип: Изобретение
Номер охранного документа: 0002480778
Дата охранного документа: 27.04.2013
27.05.2013
№216.012.43e6

Режущий инструмент

Изобретение относится к машиностроению и может быть использовано в металлорежущих инструментах при обработке различных деталей. Режущий инструмент содержит режущие элементы, расположенные с осевым смещением на цилиндрической поверхности дисков. По меньшей мере, два диска выполнены V-образной...
Тип: Изобретение
Номер охранного документа: 0002482959
Дата охранного документа: 27.05.2013
27.07.2013
№216.012.593a

Способ сверления отверстий в заготовках

Изобретение относится к машиностроению и может быть использовано при сверлении заготовок. Способ включает одновременное вращение и осевую подачу сверла и перемещение заготовки. Заготовке сообщают вращение в направлении, противоположном направлению вращения сверла. Вращение сверла осуществляют с...
Тип: Изобретение
Номер охранного документа: 0002488463
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a7b

Устройство для взвешивания массы в невесомости

Изобретение относится к измерительной технике и может найти применение для взвешивания массы в невесомости. Технический результат - упрощение и повышение точности. Для этого использованы функциональные особенности колебательной системы, которая образована упругим элементом - мембраной и...
Тип: Изобретение
Номер охранного документа: 0002488784
Дата охранного документа: 27.07.2013
27.08.2013
№216.012.65d4

Электрический привод

Изобретение относится к области электротехники и может быть использовано в электроприводах различных механизмов, исполнительных устройствах автоматических систем. Техническим результатом является повышение энергетической эффективности и надежности работы электрического привода постоянного тока....
Тип: Изобретение
Номер охранного документа: 0002491705
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6705

Изложница для получения литых протекторов

Изобретение относится к металлургии. Изложница содержит основание, боковые стенки, водоохлаждаемый поддон и кожух. Кожух установлен относительно боковых стенок изложницы с теплоизоляционным зазором. Зазор увеличивается по высоте изложницы в соответствии с выражением δ=(0,3-0,4)·h, где δ -...
Тип: Изобретение
Номер охранного документа: 0002492020
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6715

Способ пробивки микроотверстий лазерным импульсным излучением

Изобретение относится к области лазерной обработки материалов и может быть использовано для пробивки отверстий малого диаметра для оптических диафрагм, пространственных фильтров и растров. Техническим результатом данного изобретения является получение микроотверстий малого диаметра (10-30 мкм)...
Тип: Изобретение
Номер охранного документа: 0002492036
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67f4

Комплексный модификатор для заэвтектических силуминов

Изобретение относится области цветной металлургии, в частности к модифицированию заэвтектических силуминов. Модификатор для обработки расплава заэвтектических силуминов содержит, мас.%: фосфористая медь - 0,5-2,0, интерметаллид титана АlТi - 0,5-2,0, алюминий - остальное. Применение данного...
Тип: Изобретение
Номер охранного документа: 0002492259
Дата охранного документа: 10.09.2013
27.12.2013
№216.012.90d5

Композиция для защитных покрытий

Изобретение относится к композиции для защитных покрытий и может применяться для антикоррозионной, термической и антисептической защиты металлических, бетонных и деревянных поверхностей и для их ремонта, а также для увеличения прочности на удар поверхности, повышения ее гидрофобности и...
Тип: Изобретение
Номер охранного документа: 0002502770
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.91ef

Способ генерации перепутанных поляритонов

Способ относится к генерации перепутанных поляритонов. Способ генерации перепутанных поляритонов заключается в том, что выбираются параметры схемы атомно-оптического взаимодействия в допированной среде и за счет внешнего оптического управления происходит генерации перепутанных поляритонов....
Тип: Изобретение
Номер охранного документа: 0002503052
Дата охранного документа: 27.12.2013
+ добавить свой РИД