×
20.06.2015
216.013.56de

Результат интеллектуальной деятельности: СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ СВАРКИ ВЫСОКОНИКЕЛЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии жаропрочных сплавов для сварочной проволоки и может быть использовано для сварки деталей из высоконикелевых сплавов высокотемпературных установок с температурой эксплуатации до 950C. Сварочная проволока содержит, мас.%: углерод 0,01-0,05, кремний 0,05-0,2, марганец 1,3-2,0, хром 14,0-16,0, молибден 6,0-7,0, вольфрам 2,5-3,5, железо 17,0-20,0, азот 0,01-0,04, иттрий 0,01-0,1, цирконий 0,05-0,15, кальций 0,001-0,1, сера менее 0,010, фосфор менее 0,015, никель - остальное. Сварочная проволока характеризуется повышенными технологической прочностью и высокими кратковременными механическими свойствами и длительной прочностью при температурах до 950C. 1 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии жаропрочных сплавов, содержащих в качестве основы никель, хром, молибден, вольфрам, железо, марганец, а также углерод, кремний, цирконий, иттрий, кальций, и предназначено для сварки высоконикелевых сплавов, применяемых для высокотемпературных установок с температурой эксплуатации от 800 до 950°C в газовой среде. Известно, что для сварки высоконикелевых жаропрочных сталей и сплавов для установок, эксплуатирующихся до температуры 750°C, используются следующие материалы: Св-03Х15Н35Г7М6Б, Св-30Х15Н35В3Б3Т, Св-03Х20Н45Г6М6Б-ВИ [1-4]. Эти сварочные материалы не могут быть использованы при сварке деталей для высокотемпературных установок с температурой эксплуатации от 800 до 950°C, так как имеют низкие значения длительной прочности при этих температурах и низкую технологическую прочность при сварке, а наиболее близкой по составу компонентов является сварочная проволока марки Т-22 (06Х15Н35Г7В7М3Т) [5], принятая за прототип, содержащая компоненты, в масс.%

Углерод до 0,08
Хром 14,5-16,0
Кремний 0,2-0,35
Марганец 5,5-7,0
Молибден 2,4-3,2
Вольфрам 6,0-7,5
Алюминий 0,3-0,5
Титан до 0,8
Железо Остальное
Никель 34,0-36,0

Металл сварного шва, выполненный сварочной проволокой известного состава, используется для конструкций, работающих при температурах до 750°C, однако он имеет недостаточную длительную прочность при температурах 800-950°C, а также склонен к горячим трещинам при сварке, и недостаточные кратковременные механические свойства.

Техническим результатом изобретения является создание сварочной проволоки, обладающей более высокой длительной прочностью до температуры 950°C и повышенным уровнем технологической прочности при сварке и кратковременных механических свойств.

Технический результат изобретения достигается за счет того, что в сварочной проволоке, содержащей углерод, хром, кремний, марганец, молибден, вольфрам, железо и никель - дополнительно введены азот, иттрий, цирконий и кальций при следующем содержании компонентов в масс.%:

Углерод 0,01-0,05
Кремний 0,05-0,20
Марганец 1,3-2,0
Хром 14,0-16,0
Молибден 6,0-7,0
Вольфрам 2,5-3,5
Железо 17,0-20,0
Азот 0,01-0,04
Иттрий 0,01-0,1
Цирконий 0,05-0,15
Кальций 0,001-0,1
Никель и примеси Остальное
Примеси:
Сера менее 0,010
Фосфор менее 0,015

Первоочередной задачей при создании сварочной проволоки для высоконикелевых сплавов является стойкость сварного соединения к образованию горячих трещин. Количественным критерием является показатель технологической прочности Акр, то есть максимальная скорость принудительной деформации свариваемых образцов, при которой не происходит появления горячих трещин [6]. Чем она выше, тем менее склонен сварной шов к образованию горячих трещин.

Углерод. Содержание углерода более 0,05% приведет к неустойчивости структуры, появлению на границах зерен крупных карбидов Ме23С6, при этом снижается длительная прочность, длительная пластичность и ударная вязкость. Поэтому содержание углерода ограничено 0,05%.

Кремний. Увеличение содержания кремния свыше 0,30% снижает Акр, приводя к появлению трещин при сварке [6]. Его содержание было ограничено 0,20%.

Марганец. Увеличение марганца от 2,0 до 5,5÷7,0% (как в известной сварочной проволоке) не повышает (Акр), но снижает длительную прочность, особенно при температурах 900-950°C [7]. Кроме того, при изготовлении сварочной проволоки с более чем 4% Mn недопустимо по нормам экологической безопасности на металлургических заводах (вредное воздействие окислов марганца на человека).

Хром. Содержание хрома в заявляемой сварочной проволоке не изменяется по сравнению с известным составом, так как при более высоком содержании хрома (17-20%) при эксплуатации могут появиться интерметаллиды (Fe, Cr)2Mo (Fe, Cr)2W, что приводит к разупрочнению [7]. Поэтому в изобретении содержание хрома находится в пределах 14,0÷16,0%.

Молибден и вольфрам. При определении содержания молибдена и вольфрама были приняты во внимание результаты прогнозирования склонности к выделению фаз в высоконикелевых сплавах, изложенные в работах [8, 9]. Соотношение между содержанием Мо и W должно быть 2,0-2,5. Большее значение соотношения приводит к появлению охрупчивающих фаз, а меньшее - к снижению длительной прочности и стабильности механических свойств. Молибден и вольфрам в основном находятся в твердом растворе аустенита и упрочняют матрицу.

Увеличение содержания Мо и W или изменение соотношения Mo/W приведет к большему выпадению интерметаллидных фаз, их коагуляции и, следовательно, к снижению длительной прочности.

Титан и алюминий в известный состав электродов ЦТ-22 вводят для упрочнения за счет дисперсионного твердения, связанного с образованием фазы типа Ni3(Ti, Al), однако эта фаза при температурах более 800-850°C является неустойчивой, что снижает высокотемпературную прочность. Для условий эксплуатации при 800-950°C эти элементы приведут к разупрочнению, поэтому их применять нецелесообразно.

Иттрий. Иттрий вводят в сварочную проволоку для повышения высокотемпературных пластических свойств, так как он очищает границы зерен от легкоплавких примесей, образуя с ними тугоплавкие соединения.

Известно [10], что введение 0,01-0,05% иттрия в высоконикелевый сплав повышает относительное удлинение на 10-15% при высоких температурах.

Технологичность при ковке слитков и поковок существенно повышается, аналогичным образом повышается и Акр при сварке, что позволяет сваривать высоконикелевые сплавы без горячих трещин.

Цирконий. Цирконий связывает углерод и азот, создавая мелкодисперсные карбиды и нитриды, что способствует повышению длительной прочности. Образование и растворение ZrC, ZrN происходит при температурах 1150-1250°C, то есть карбиды и нитриды циркония обладают высокой стойкостью при температурах эксплуатации (до 950°C). Упрочняющее влияние циркония объясняется еще тем, что, с одной стороны, он является сильным раскислителем, повышая качество металла, а с другой, будучи поверхностно активным элементом, располагается в пограничных объемах и затрудняет протекание диффузионных процессов.

Кальций. Кальций имеет большое сродство с серой, образуя высокотемпературное соединение CaS, что приводит к повышению высокотемпературной пластичности материала за счет уменьшения сегрегатов и очистки матрицы от серы, при этом снижается склонность к образованию горячих трещин при сварке.

Сера и фосфор. Для увеличения прочности границ зерен и повышения пластичности при высоких температурах необходимо ограничить содержание серы и фосфора по сравнению с известной сварочной проволокой, так как сера и фосфор на границах зерен образуют легкоплавкие эвтектики. Поэтому в заявляемой сварочной проволоке серы и фосфора должно быть не более 0,010 и 0,015% соответственно.

Были выплавлены плавки предлагаемого и известного составов в индукционных печах с основным тиглем, проведена горячая пластическая обработка, включающая ковку и прокатку в интервале температур 1180-960°C, и волочение. Получена проволока диаметром 1,6, 2, 3, 4 и 5 мм, прошедшая термообработку, и осуществлена сварка с использованием этой проволоки пластин толщиной до 40 мм из сплава марки 05Х19Н50М6В3Ц, исследованы механические свойства, длительная прочность и склонность металла сварного шва к образованию горячих трещин при сварке (по показателю технологической прочности Акр).

Химический состав сварочной проволоки приведен в таблице 1, химический состав металла шва - в таблице 2, свойства металла шва - в таблице 3.

При этом химический состав свариваемого металла в масс.% составлял:

Углерод 0,037
Кремний 0,1
Марганец 1,6
Хром 17,7
Молибден 6,1
Вольфрам 2,7
Железо 17,9
Иттрий 0,06
Цирконий 0,10
Кальций 0,005
Сера 0,01
Фосфор 0,015
Никель Остальное

Таблица 1
Химический состав сварочной проволоки
Сварочная проволока Условный номер плавки Химический состав, вес.%
С N Si Mn Cr Мо W Fe Y Zr Са Примеси Ni
S Р
Предлагаемая 1 0,01 0,01 0,05 1,30 14,0 6,0 2,5 17,0 0,01 0,05 0,001 0,010 0,008 остальное
2 0,03 0,02 0,15 1,5 15,0 6,5 3,0 18,4 0,05 0,10 0,05 0,006 0,006 остальное
3 0,05 0,04 0,20 2,0 16,0 7,0 3,5 20,0 0,1 0,15 0,1 0,005 0,015 остальное
Известная 4 0,038 - 0,10 1,72 15,5 3,1 6,5 Ост. - 0,012 0,016 35,6

Таблица 2
Химический состав металла сварного шва (аргонодуговая сварка)
Сварочная проволока Условный номер плавки Химический состав, вес.%
С N Si Mn Cr Мо W Fe Y Zr Са Примеси Ni
S Р
Предлагаемая 1 0,020 0,01 0,04 1,4 13,8 5,8 2,0 17,0 0,004 0,05 0,001 0,007 0,007 ОСТ.
2 0,031 0,02 0,12 1,0 14,6 6,2 2,9 18,2 0,04 0,07 0,04 0,005 0,006 ОСТ.
3 0,043 0,04 0,20 1,9 15,3 6,4 3,3 19,2 0,08 0,15 0,08 0,005 0,009 ОСТ.
Известная 4 0,036 - 0,10 1,46 15,5 3,0 6,4 Ост. - - - 0,011 0,012 35,0

Таблица 3
Свойства металла сварного шва
Сварочная проволока Условный номер плавки Предел прочности, МПа Предел текучести, МПа Технологическая прочность Акр, мм/мин Длительная прочность при 950°C за 1000 час, МПа
+20°C +950°C +20°C +950°C
Предлагаемая 1 617 147 323 137 2,3 24,5
2 625 167 348 139 2,5 26,0
3 640 186 353 141 2,7 26,5
Известная 4 608 127 245 108 0,9 17,6

Примечания:

1. Результаты механических испытаний усреднены по трем образцам на точку.

2. Для оценки технологической и длительной прочности использовано по 6 образцов на точку.

Из таблицы 3 следует, что пределы прочности и текучести металла сварного шва при температурах 20 и 950°C выше у предлагаемой сварочной проволоки, чем у известной. Длительная прочность при температуре 950 C за 1000 часов также выше. Склонность к горячему трещинообразованию у известной сварочной проволоки выше чем у предлагаемой, что следует из оценки технологической прочности (Акр).

Ожидаемый технико-экономический эффект, который может быть получен при использовании предлагаемого состава сварочной проволоки, выразится в увеличении надежности и срока службы энергетических установок, сварные соединения которых работают при повышенных до 950°C температурах за счет повышения длительной прочности металла сварного шва, а также в снижении брака и трудоемкости при проведении сварочных работ за счет повышения технологической прочности металла шва (отсутствие горячих трещин).

Источники информации

1. Правила и нормы в атомной энергетике. (ПН АЭ Г-7-009-89).

2. Шоршоров М.Х., Банных О.А., Антипов В.И. и др. Сплав Н70ВТЮ-ИД (ЭК-27-ИД). Физика и химия обработки материалов. М.: 1977, №1, с.112.

3. Шоршоров М.Х. Горячие трещины при сварке жаропрочных сплавов. М.: Машиностроение, 1974, с.189.

4. Journal of Engineering Materials and Technology. V 107, №1, 1985.

5. Закс И.А. Электроды для дуговой сварки сталей и никелевых сплавов. Справочное пособие. С-Петербург, 1996 г., с.275-278.

6. Заболоцкий В.М. и др. Исследование свариваемости высоконикелевых аустенитных сплавов типа 03Х20Н45М3Б. Вопросы судостроения. Сварка. Вып.33, 1982 г.

7. Химушин Ф.Ф. Жаропрочные стали и сплавы. М.: Металлургия, 1964.

8. Трапезников Ю.М., Михайлов А.С. Прогнозирование склонности жаропрочной стали к выделению охрупчивающих фаз. Вопросы судостроения. Металловедение. №43, 1985.

9. Трапезников Ю.М., Михайлов А.С. Выбор легирующего комплекса в целях разработки материала для длительной работы до 900°C. Технология судостроения, №12, 1985.

10. Трапезников Ю.М., Бережко Б.И., Зимин Г.Г. Исследование влияния технологии изготовления трубной заготовки на свойства стали 03Х20Н32М3Б. Вопросы судостроения. Сер. Металлургия, вып. 29, 1980 г.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 43.
20.05.2019
№219.017.5d4d

Способ микродугового оксидирования титановой проволоки для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование в водном растворе жидкого стекла NaSiO с концентрацией 20,0±2,0 г/л при напряжении от 320 до 340 В в течение 15±2 мин при температуре...
Тип: Изобретение
Номер охранного документа: 0002391449
Дата охранного документа: 10.06.2010
20.05.2019
№219.017.5d4f

Флюс для аргонодуговой сварки изделий из медно-никелевых сплавов

Изобретение может быть использовано при сварке неплавящимся электродом в среде аргона стыков труб из медно-никелевого сплава типа МНЖ5-1. Флюс содержит компоненты в следующем соотношении, мас.%: фторид алюминия 56-62, фторид кальция 8-14, хлорид калия 10-20, борный ангидрид 10-20. Флюс...
Тип: Изобретение
Номер охранного документа: 0002396157
Дата охранного документа: 10.08.2010
20.05.2019
№219.017.5d50

Способ производства листов из хладостойкой стали

Изобретение относится к технологии производства листового проката, предназначенного для изготовления деталей и узлов конструкций, работающих при низких температурах, например контейнеров для перевозки и длительного хранения отработавшего ядерного топлива. Для повышения хладостойкости листов из...
Тип: Изобретение
Номер охранного документа: 0002394108
Дата охранного документа: 10.07.2010
20.05.2019
№219.017.5d51

Состав порошковой проволоки для сварки труб категории прочности х90

Изобретение может быть использовано для автоматической и механизированной сварки в среде защитных газов низколегированных трубных сталей категории прочности Х90. Порошковая проволока содержит, мас.%: двуокись титана 4,21-7,32; полевой шпат 0,50-1,50; электрокорунд 0,21-0,71; плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002387527
Дата охранного документа: 27.04.2010
20.05.2019
№219.017.5d58

Способ термической обработки полуфабрикатов из низкоуглеродистых ферритоперлитных сталей

Изобретение относится к технологии термической обработки поковок, предназначенных для изготовления деталей и узлов, работающих при низких температурах, например, контейнеров для перевозки и длительного хранения (более 50 лет) отработавшего ядерного топлива. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002373292
Дата охранного документа: 20.11.2009
20.05.2019
№219.017.5d59

Сварочная проволока для сварки жаропрочных жаростойких сплавов

Изобретение может быть использовано при создании ответственных конструкций из жаростойких жаропрочных сплавов на железохромоникелевой основе, в частности для изготовления реакционных змеевиков высокотемпературных установок пиролиза, подвергающимся значительным статическим нагрузкам, работающих...
Тип: Изобретение
Номер охранного документа: 0002373039
Дата охранного документа: 20.11.2009
30.05.2019
№219.017.6bda

Способ оксидирования титанового сплава для антифрикционной наплавки

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. Способ включает микродуговое оксидирование МДО в электролите под напряжением, при этом в качестве электролита используют раствор фосфатов или силикатов, а процесс МДО ведут в два...
Тип: Изобретение
Номер охранного документа: 0002367728
Дата охранного документа: 20.09.2009
09.06.2019
№219.017.79a8

Суспензия для получения покрытия

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. Технический результат изобретения заключается в разработке состава суспензии для получения покрытий для снятия статических электрических зарядов, работающего в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002399595
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.79e4

Смесь для изготовления литейных форм и стержней

Изобретение относится к области литейного производства. Смесь содержит в мас.%: огнеупорный наполнитель в виде порошка недоплава производства электротехнического периклаза 40,0-50,0, связующее в виде жидкого стекла 5,0-12,0 и порошок лома использованных литейных форм из недоплава 45,0-48,0....
Тип: Изобретение
Номер охранного документа: 0002312732
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a36

Способ гранулирования флюса

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том...
Тип: Изобретение
Номер охранного документа: 0002387521
Дата охранного документа: 27.04.2010
Показаны записи 31-37 из 37.
20.05.2019
№219.017.5d5b

Листовая хладостойкая сталь для высоконагруженных конструкций контейнерной техники атомной и термоядерной энергетики

Изобретение относится к области металлургии, а именно к листовой хладостойкой стали, используемой в атомном энергомашиностроении при серийном производстве высоконадежной контейнерной техники для транспортировки и длительного хранения отработавшего ядерного топлива и радиоактивных отходов...
Тип: Изобретение
Номер охранного документа: 0002413782
Дата охранного документа: 10.03.2011
20.05.2019
№219.017.5d62

Способ сварки хладостойких низколегированных сталей

Изобретение может быть использовано для сварки изделий атомного машиностроения, в частности изделий, эксплуатирующихся при температурах до минус 60°С, например металлоконструкций транспортно упаковочных комплектов металлобетонных контейнеров, предназначенных для многоразовой транспортировки и...
Тип: Изобретение
Номер охранного документа: 0002425737
Дата охранного документа: 10.08.2011
24.05.2019
№219.017.6027

Сварочный материал

Изобретение относится к области производства сварочных материалов, используемых в атомной энергетике, в частности, для сварки корпусов парогенераторов. Материал содержит в мас.%: углерод 0,03-0,05, кремний 0,2-0,3, марганец 1,0-1,5, хром 11,0-14,0, никель 1,3-1,5, молибден 0,8-1,0, ванадий...
Тип: Изобретение
Номер охранного документа: 0002429307
Дата охранного документа: 20.09.2011
24.05.2019
№219.017.6076

Сварочный материал для сварки хладостойких низколегированных сталей

Изобретение относится к области металлургии, а именно к производству сварочных материалов, используемых в атомной энергетике для полуавтоматической сварки в смеси защитных газов металлоконструкций из хладостойкой низколегированной стали для транспортно-упаковочных комплектов металлобетонных...
Тип: Изобретение
Номер охранного документа: 0002436663
Дата охранного документа: 20.12.2011
09.02.2020
№220.018.015a

Агломерированный флюс 48аф-71

Изобретение может быть использовано для автоматической сварки на переменном токе под флюсом теплоустойчивых сталей перлитного класса, применяемых в атомном энергетическом машиностроении. Агломерированный флюс содержит компоненты в следующем соотношении, мас.%: обожженный магнезит 24,4-27,6;...
Тип: Изобретение
Номер охранного документа: 0002713769
Дата охранного документа: 07.02.2020
23.07.2020
№220.018.358a

Агломерированный флюс 48аф-72

Изобретение относится к сварочным материалам и может быть использовано для электродуговой сварки под флюсом сталей аустенитного класса проволоками аустенитно-ферритного класса. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд 24,5-37, волластонит 27,5-35,0, плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002727137
Дата охранного документа: 20.07.2020
23.05.2023
№223.018.6d2e

Способ изготовления поковок из сталей аустенитного класса

Изобретение относится к области черной металлургии и может быть использовано при изготовлении толстостенных поковок из сталей аустенитного класса, применяемых для получения изделий тепловой и атомной энергетики. Выплавленный слиток после полного прогрева подвергают гомогенизации при температуре...
Тип: Изобретение
Номер охранного документа: 0002766225
Дата охранного документа: 10.02.2022
+ добавить свой РИД