×
20.05.2015
216.013.4b9a

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного микроструктурирования. Затем для допирования поверхностного слоя кремния атомами серы микроструктурированную поверхность обрабатывают множественными УКИ под тонким слоем жидкой фазы сероуглерода, для чего в него погружают мишень кремния. Атомы серы, образовавшиеся в результате разложения сероуглерода, диффундируют в объем конденсированной фазы кремния. Изобретение обеспечивает формирование микроструктурированного высокодопированного - до 5 ат % атомами серы слоя на поверхности кремния. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области формирования микроструктурированных и высокодопированных тонких слоев на поверхности кремния, хорошо поглощающих не только в УФ и видимом, но и в ближнем ИК диапазонах, для фоточувствительных элементов солнечной энергетики и приборов ночного видения.

Известны способы направленного создания нерегулярной микротекстуры поверхности различных материалов с помощью оптической и электронной литографии, химического и электрохимического травления, непосредственного распыления ионным или электронным пучком [1]. Общими недостатками данных способов являются необходимость вакуумирования образцов, довольно низкая скорость и высокая стоимость фабрикации, в случае литографии - необходимость использования резиста и его последующей химической обработки. В случае химического и электрохимического травления существует необходимость в использовании агрессивных химических реагентов.

Также известны способы допирования поверхностного слоя полупроводников, из которых наиболее эффективным является способ ионной имплантации. Вместе с тем, максимальная степень допирования, достигаемая путем ионной имплантации, относительно невелика - менее 10-1 атомных % (концентрация примеси порядка 1020 см-3), что связано с распылением имплантированного слоя ионным пучком, а также аморфизацией материала при концентрации примеси более 1021 см-3. В случае же использования низкоинтенсивных пучков время имплантации становится неоправданно большим.

В совокупности, известные способы микроструктурирования поверхности совместимы с известными способами допирования (преимущественно - ионной имплантацией) только как раздельные стадии обработки, обе необходимые даже для формирования относительно слабодопированных слоев.

В то же время существует также способ одновременного микроструктурирования и сильного допирования (степень допирования на несколько порядков выше, чем при ионной имплантации - до нескольких атомных процентов) поверхности кремния под действием множественных фемтосекундных лазерных импульсов, когда образец кремния размещается в камере с газообразными серосодержащими соединениями [2] или его поверхность запыляется нанометровым слоем селена [3], который не имеет указанных выше недостатков (прототип). Суть данного способа заключается в разложении серосодержащих соединений на нагретой расплавленной лазерными импульсами поверхности кремния и последующей диффузии атомов серы в объем конденсированной фазы, при том, что движение расплава материала на поверхности формирует визуально «черную» структуру микроконусов (Фиг.1, оптический (а) и электронно-микроскопический (б) снимки микроструктурированной поверхности кремния), которая определяет практически полное поглощение электромагнитного излучения с длиной волны менее 10 мкм вследствие его запутывания в долинах этой структуры [4]. При абляции поверхности кремния в определенных режимах также происходит формирование структуры микроконусов, приведенных на Фиг.1, в результате движения расплава или перепыления на растущие микроконусы вещества, удаленного (аблированного) из долин между конусами, так что многократное циклическое допирование атомами серы в зоне лазерного воздействия на поверхности после каждого лазерного импульса происходит в результате разложения серосодержащих соединений на нагретой поверхности или при взаимодействии с абляционным факелом с последующим переосаждением атомов серы или серосодержащих интермедиатов на поверхность микроконусов структуры. В отличие от долин, абляция самих микронусов практически не происходит из-за наклонного падения УКИ, уменьшающего плотность лазерной энергии на склонах микроконусов ниже пороговой для абляции. Аналогично, при обработке - нагревании, плавлении и абляции под действием УКИ предвательно нанесенной на поверхность кремния нанометровой пленки твердого селена происходит и внедрение атомов селена в поверхностный слой, и формирование в нем структуры микроконусов кремния. В результате сверхбыстрого (пикосекундного) плавления тонкого допируемого и микроструктурируемого поверхностного слоя мишени кремния под действием УКИ, а также очень быстрого (в течение нескольких наносекунд) его затвердевания в ходе охлаждения за счет теплопроводности, испарительных и радиационных потерь в него можно ввести высокие неравновесные концентрации серы или селена, недостижимые путем ионной имплантации.

Основным недостатком данного способа формирования микроструктурированных и высокодопированных серой или селеном слоев на поверхности кремния является ограничение на концентрацию допирующего агента (степень допирования), которую можно ввести в кремниевую мишень - до 0.7 ат.% [2, 3]. Допирование играет определяющую роль в создании в запрещенной зоне ниже дна зоны проводимости кремния глубоких донорных состояний [5] (в данном случае - серы или селена), определяющих несвойственное чистому кремнию поглощение допированного материала в ближней ИК области [6]. Степень допирования определяет число (плотность) донорных состояний и, в итоге, коэффициент поглощения допированного материала в ближней ИК области. В случае допирования из газовой фазы (например, серосодержащими соединениями) [2], при отсутствии предварительной конденсации допирующих соединений перед воздействием УКИ эффективные соударения молекул, содержащих допирующий элемент, с поверхностью мишени или частицами абляционного факела циклически происходят после воздействия каждого УКИ в некотором временном окне, которое определяется временем остывания поверхности или временем жизни (расширения, охлаждения и конденсации) абляционного факела. При исходной невысокой плотности молекул, содержащих допирующий элемент, в реакционной газовой смеси при давлении <1 атм над облучаемой множественными УКИ поверхностью кремния и узком - порядка наносекунд - временном окне для допирования его кинетика оказывается довольно медленной в силу относительно невысокого среднего потока допирующего агента и малого времени его внедрения в мишень. В результате для достижения высоких степеней допирования требуется неоправданно большое время. В более выигрышном случае - при обработке (нагревании, плавлении и абляции) под действием УКИ предварительно нанесенной на поверхность кремния нанометровой пленки твердого селена первоначально допирующий агент в избытке присутствует на поверхности кремния и кинетика его внедрения определяется только указанным временным окном. Однако в последнем случае абляция мишени начинается именно с этой пленки селена и поэтому сразу начинается невосполнимый расход (удаление во внешнюю среду) этого допирующего агента, а далее уже введенное в мишень количество селена в процессе последующего микроструктурирования мишени может только уменьшаться вследствие частичного необратимого (без переосаждения на микроконусах) абляционного удаления уже допированного материала мишени и составляет, в итоге, ~0.1%. Данный недостаток устраняется с помощью предложенного изобретения, включающего новый способ формирования микроструктурированных и высокодопированных серой слоев на поверхности кремния.

Задача, решаемая изобретением, заключается в устранении недостатка прототипа, то есть в многократном повышении степени допирования поверхностного слоя кремния атомами серы в процессе его микроструктурирования под действием УКИ.

Для решения поставленной задачи предложено выбрать особый тип активной реакционной среды - жидкую фазу серосодержащего соединения с высоким содержанием серы, а также режим воздействия УКИ, параметры которого выбраны так, чтобы излучение УКИ проникало к мишени сквозь жидкую фазу серосодержащего соединения, а энергия, частота следования и фокусировка УКИ обеспечивали абляционное микроструктурирование поверхности кремния [7].

Решение поставленной задачи демонстрируется следующими примерами. Пластина недопированного кремния с полированной поверхностью оптического качества сначала облучается в режиме сканирования фокусированным излучением УКИ титан-сапфирового лазера с центральной длиной волны 744 нм, длительностью 100-110 фс и энергией 0.3-5 мДж, так чтобы обеспечить интенсивную абляцию и микроструктурирование поверхности кремния (Фиг.1) при плотности энергии УКИ в диапазоне ≈0.3-0.7 Дж/см2 в зависимости от числа лазерных импульсов (обычно - в диапазоне 102-103), падающих в каждую точку поверхности. Затем эта пластина кремния с микроструктурированной поверхностью погружается в ячейку с серосодержащим соединением - жидким сероуглеродом CS2 - на глубину 3-4 мм, и ее микроструктурированная поверхность повторно облучается при таких же условиях для абляционного допирования уже подготовленной микроструктурированной поверхности. Высокотемпературное испарение жидкого сероуглерода и термическое разложение молекул CS2, как минимум, до двухатомной молекулы CS и атома серы при взаимодействии с нагретой поверхностью твердого или расплавленного кремния [8] или с атомной и кластерно-капельной компонентами абляционного факела кремния обеспечивают высокую - близкую к твердофазной - концентрацию атомов серы на поверхности кремния, что выражается в чрезвычайно высокой скорости и результирующей рекордной степени допирования (до 5%), согласно данным энергодисперсионного рентгеновского анализа допированного слоя. Соответствующий спектр (а) и таблица (б) с результатами анализа по содержанию кремния, кислорода и серы в поверхностном слое облученного материала приведены на Фиг.2. Иначе микроструктурирование кремния под действием УКИ может сразу - в одну стадию - проводиться в жидком сероуглероде для одновременного допирования его микроструктурируемой поверхности.

Допирование серой приводит к появлению в ИК-спектре пропускания обработанного материала (обозначение «эксп») - по сравнению с табулированным спектром пропускания недопированного кристаллического кремния (обозначение «табул») - характерного провала пропускания в области 1.4-2 мкм, отмеченного стрелкой на Фиг.3, появление которого согласуется с образованием глубоких донорных S-центров серы в кремнии на глубине 0.7 эВ ниже дна зоны проводимости [5]. Обработка ИК-спектра для допированного серой кремния для характерной глубины допированного слоя ~100 нм, измеренной нами методом обратного резерфордовского рассеяния α-частиц, показывает более существенный, чем достигнутый ранее [2, 3, 6], коэффициент поглощения кремния в ИК-области в диапазоне 1.4-4 мкм. Соответствующие спектры коэффициента поглощения для недопированного кристаллического кремния (сплошная кривая) и его допированного слоя со степенью допирования ≈5 ат.% (пунктирная кривая с указанной полосой поглощения глубоких донорных S-центров серы) приведены на Фиг.4.

Таким образом, предлагаемое данным изобретением многократное (почти на порядок величины) повышение степени допирования поверхностного слоя кремния атомами серы в процессе его микроструктурирования под действием УКИ реализуется практически и предполагает существенное повышение ИК фоточувствительности кремния для возможных применений, например, в солнечной энергетике и оптоэлектронике приборов ночного видения.

Литература

1. N.C.Lindquist, P.Nagpal, К.М.McPeak, D.J Norris, S.-H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Rep.Prog. Phys. 75, 036501 (2012).

2. C.H.Crouch, J.E.Carey, M.Shen, E.Mazur, F.Y.Genin, Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation, Appl. Phys. A 79. 1635-1641 (2004).

3. M.J.Smith, M.Winkler, M.-J.Sher, Y.-T.Ling, E. Mazur, S.Gradecak, The effect of a thin dopant precursor on the structure and properties of femtosecond-laser irradiated silicon, Applied Physics A 105, 795-800 (2011).

4. P.G.Maloney, P.Smith, V. King, C.Billman, M.Winkler, E.Mazur, Emissivity of microstructured silicon. Applied Optics 49, N7, 1065-1068 (2010).

5. П.Ю.M. Кардона, Основы физики полупроводников, Москва, Физматлит, 2002, гл.4.

6. М.А.Sheehy, L.Winston, J.E.Carey, C.M.Friend, E.Mazur, Role of the background gas in the morphology and optical properties of laser-microstructured silicon, Chem. Mater. 17, 3582-3586 (2005).

7. E.B.Голосов, A.A.Ионин, Ю.Р.Колобов, С.И.Кудряшов, А.Е.Лигачев, С.В.Макаров, Ю.Н.Новоселов, Л.В.Селезнев, Д.В.Синицын. Формирование квазипериодических нано- и микроструктур на поверхности кремния под действием ИК и УФ фемтосекундных лазерных импульсов. Квант. эл-ка 41 (9), 829-834 (2011).

8. А.А.Ионин, С.И.Кудряшов, Л.В.Селезнев, Д.В.Синицын, А.Ф.Бункин, В.Н.Леднев, С.М.Першин, Термическое плавление и абляция поверхности кремния фемтосекундным лазерным излучением, ЖЭТФ 143, №3, 403-422 (2013).


СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-49 из 49.
29.07.2020
№220.018.38b6

Способ доставки криогенной топливной мишени для управляемого инерциального термоядерного синтеза, система и носитель

Изобретение относится к средству доставки криогенной топливной мишени (КТМ) для управляемого инерциального термоядерного синтеза, системе для реализации этого способа и носителю для использования в такой системе. В заявленном способе размещают каждую криогенную топливную мишень в носитель,...
Тип: Изобретение
Номер охранного документа: 0002727925
Дата охранного документа: 27.07.2020
12.04.2023
№223.018.4309

Способ определения магнитных свойств материала

Изобретение относится к области измерительной техники. Для определения магнитных свойств материала в заданной области пространства размещают мишень, изготовленную из исследуемого материала, и создают магнитное поле с заданными свойствами, силовые линии которого имеют составляющую, параллельную...
Тип: Изобретение
Номер охранного документа: 0002793610
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.432b

Способ определения распределения магнитного поля

Использование: изобретение относится к области измерительной техники и может быть использовано для определения распределения магнитного поля в заданной области пространства (в частности, рабочих камерах высокоэнергетических установок). Сущность: для определения распределения магнитного поля в...
Тип: Изобретение
Номер охранного документа: 0002793615
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4547

Двумерная матрица лазерных диодов и способ её сборки

Изобретение относится к двумерной матрице лазерных диодов и способу её сборки. Его использование обеспечивает технический результат, а именно повышение плотности мощности излучения матрицы при обеспечении надежности и срока службы. Двумерная матрица лазерных диодов содержит: линейки лазерных...
Тип: Изобретение
Номер охранного документа: 0002757055
Дата охранного документа: 11.10.2021
16.05.2023
№223.018.5e32

Способ поляризации плёнки из полимерного материала и устройство для его осуществления

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с...
Тип: Изобретение
Номер охранного документа: 0002755643
Дата охранного документа: 17.09.2021
16.05.2023
№223.018.5e33

Способ поляризации плёнки из полимерного материала и устройство для его осуществления

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с...
Тип: Изобретение
Номер охранного документа: 0002755643
Дата охранного документа: 17.09.2021
02.06.2023
№223.018.75cb

Устройство для комбинированной обработки поверхности изделия из металла или его сплава

Изобретение относится к области упрочняющей поверхностной обработки изделий из металлов или их сплавов с нанесением многослойных покрытий и может быть использовано в машиностроении при упрочнении рабочих поверхностей деталей для повышения их долговечности, коррозионной стойкости, сопротивления...
Тип: Изобретение
Номер охранного документа: 0002796479
Дата охранного документа: 24.05.2023
16.06.2023
№223.018.7ae0

Способ фототерапевтического облучения патологической зоны в организме живого существа и осветительное устройство для его осуществления

Группа изобретений относится к медицинской технике, к способу фототерапевтического облучения патологической зоны в организме живого существа и к осветительному устройству для осуществления этого способа. Изобретения обеспечивают более эффективное фототерапевтическое воздействие. Размещают по...
Тип: Изобретение
Номер охранного документа: 0002732829
Дата охранного документа: 23.09.2020
17.06.2023
№223.018.7f48

Лазерная система для обнаружения аварийного режима работы ядерного реактора

Изобретение относится к лазерной системе обнаружения аварийного режима работы ядерного реактора. Мониторинг атмосферы технического помещения 1 осуществляется путем анализа характеристик газового состава в объеме измерительного блока-контейнера 2 посредством просвечивания этого объема лазерным...
Тип: Изобретение
Номер охранного документа: 0002766300
Дата охранного документа: 14.03.2022
Показаны записи 31-40 из 40.
28.03.2020
№220.018.1132

Способ разработки битуминозных карбонатных коллекторов с использованием циклической закачки пара и катализатора акватермолиза

Изобретение относится к способам разработки залежей тяжелых нефтей и природных битумов. Технический результат - обеспечение возможности подземного облагораживания нефти с целью повышения эффективности нефтеотдачи карбонатных коллекторов, необратимое снижение вязкости тяжелой нефти и природных...
Тип: Изобретение
Номер охранного документа: 0002717849
Дата охранного документа: 26.03.2020
20.04.2020
№220.018.1618

Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок

Изобретение относится к области синтеза неорганических материалов, в частности к получению перовскитных тонких пленок, которые могут применяться в качестве активного слоя для светодиодов и солнечных элементов. Способ изготовления неорганических хлорсодержащих перовскитных тонких пленок методом...
Тип: Изобретение
Номер охранного документа: 0002719167
Дата охранного документа: 17.04.2020
23.04.2020
№220.018.17ed

Оптически проницаемая метка для маркировки драгоценных камней

Изобретение относится к меткам, используемым для маркировки драгоценных камней, в том числе алмазов или бриллиантов, и несущим информацию различного назначения, например коды идентификации, в частности к меткам, невидимым невооруженным глазом, с помощью увеличительных стекол и микроскопов...
Тип: Изобретение
Номер охранного документа: 0002719611
Дата охранного документа: 21.04.2020
26.04.2020
№220.018.19de

Способ создания и детектирования оптически проницаемого изображения внутри алмаза и системы для детектирования (варианты)

Изобретение относится к способам создания внутри алмазов изображений, несущих информацию различного назначения, например кода идентификации, метки, идентифицирующие алмазы. Техническим результатом является повышение точности создания оптически проницаемого изображения внутри алмаза и его...
Тип: Изобретение
Номер охранного документа: 0002720100
Дата охранного документа: 24.04.2020
20.04.2023
№223.018.4d1b

Внутрискважинный кольцевой нагреватель

Изобретение относится к устройствам для добычи нефти с применением тепла и может найти применение при разработке нефтяных залежей. Внутрискважинный нагреватель содержит коаксиально расположенные друг относительно друга внешнюю и внутреннюю трубы. Внешняя стенка внутренней трубы и внутренняя...
Тип: Изобретение
Номер охранного документа: 0002756155
Дата охранного документа: 28.09.2021
20.04.2023
№223.018.4d29

Внутрискважинный пучковый нагреватель

Изобретение относится к устройствам для добычи нефти с применением тепла и может найти применение при разработке нефтяных залежей. Внутрискважинный нагреватель состоит из коаксиально расположенных относительно друг друга внешней (5) и внутренней труб (3). При этом внешняя стенка внутренней...
Тип: Изобретение
Номер охранного документа: 0002756152
Дата охранного документа: 28.09.2021
15.05.2023
№223.018.5cda

Пространственный код для записи информации в объеме прозрачного объекта с возможностью считывания с произвольного направления

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении возможности считывания метки с любого произвольного направления. Метка, выполненная в объеме прозрачного объекта, с возможностью считывания с любого произвольного направления, несущая записанную...
Тип: Изобретение
Номер охранного документа: 0002751986
Дата охранного документа: 21.07.2021
15.05.2023
№223.018.5cdb

Пространственный код для записи информации в объеме прозрачного объекта с возможностью считывания с произвольного направления

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении возможности считывания метки с любого произвольного направления. Метка, выполненная в объеме прозрачного объекта, с возможностью считывания с любого произвольного направления, несущая записанную...
Тип: Изобретение
Номер охранного документа: 0002751986
Дата охранного документа: 21.07.2021
17.06.2023
№223.018.7e4b

Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления

Изобретение относится к способу наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающемуся в том, что с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002771025
Дата охранного документа: 25.04.2022
17.06.2023
№223.018.812c

Способ создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления

Изобретение относится к области электротехники, а именно к способу создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, и может быть использовано для оптической диагностики и визуализации внутренней структуры объектов...
Тип: Изобретение
Номер охранного документа: 0002759509
Дата охранного документа: 15.11.2021
+ добавить свой РИД