×
20.05.2015
216.013.4b9a

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного микроструктурирования. Затем для допирования поверхностного слоя кремния атомами серы микроструктурированную поверхность обрабатывают множественными УКИ под тонким слоем жидкой фазы сероуглерода, для чего в него погружают мишень кремния. Атомы серы, образовавшиеся в результате разложения сероуглерода, диффундируют в объем конденсированной фазы кремния. Изобретение обеспечивает формирование микроструктурированного высокодопированного - до 5 ат % атомами серы слоя на поверхности кремния. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области формирования микроструктурированных и высокодопированных тонких слоев на поверхности кремния, хорошо поглощающих не только в УФ и видимом, но и в ближнем ИК диапазонах, для фоточувствительных элементов солнечной энергетики и приборов ночного видения.

Известны способы направленного создания нерегулярной микротекстуры поверхности различных материалов с помощью оптической и электронной литографии, химического и электрохимического травления, непосредственного распыления ионным или электронным пучком [1]. Общими недостатками данных способов являются необходимость вакуумирования образцов, довольно низкая скорость и высокая стоимость фабрикации, в случае литографии - необходимость использования резиста и его последующей химической обработки. В случае химического и электрохимического травления существует необходимость в использовании агрессивных химических реагентов.

Также известны способы допирования поверхностного слоя полупроводников, из которых наиболее эффективным является способ ионной имплантации. Вместе с тем, максимальная степень допирования, достигаемая путем ионной имплантации, относительно невелика - менее 10-1 атомных % (концентрация примеси порядка 1020 см-3), что связано с распылением имплантированного слоя ионным пучком, а также аморфизацией материала при концентрации примеси более 1021 см-3. В случае же использования низкоинтенсивных пучков время имплантации становится неоправданно большим.

В совокупности, известные способы микроструктурирования поверхности совместимы с известными способами допирования (преимущественно - ионной имплантацией) только как раздельные стадии обработки, обе необходимые даже для формирования относительно слабодопированных слоев.

В то же время существует также способ одновременного микроструктурирования и сильного допирования (степень допирования на несколько порядков выше, чем при ионной имплантации - до нескольких атомных процентов) поверхности кремния под действием множественных фемтосекундных лазерных импульсов, когда образец кремния размещается в камере с газообразными серосодержащими соединениями [2] или его поверхность запыляется нанометровым слоем селена [3], который не имеет указанных выше недостатков (прототип). Суть данного способа заключается в разложении серосодержащих соединений на нагретой расплавленной лазерными импульсами поверхности кремния и последующей диффузии атомов серы в объем конденсированной фазы, при том, что движение расплава материала на поверхности формирует визуально «черную» структуру микроконусов (Фиг.1, оптический (а) и электронно-микроскопический (б) снимки микроструктурированной поверхности кремния), которая определяет практически полное поглощение электромагнитного излучения с длиной волны менее 10 мкм вследствие его запутывания в долинах этой структуры [4]. При абляции поверхности кремния в определенных режимах также происходит формирование структуры микроконусов, приведенных на Фиг.1, в результате движения расплава или перепыления на растущие микроконусы вещества, удаленного (аблированного) из долин между конусами, так что многократное циклическое допирование атомами серы в зоне лазерного воздействия на поверхности после каждого лазерного импульса происходит в результате разложения серосодержащих соединений на нагретой поверхности или при взаимодействии с абляционным факелом с последующим переосаждением атомов серы или серосодержащих интермедиатов на поверхность микроконусов структуры. В отличие от долин, абляция самих микронусов практически не происходит из-за наклонного падения УКИ, уменьшающего плотность лазерной энергии на склонах микроконусов ниже пороговой для абляции. Аналогично, при обработке - нагревании, плавлении и абляции под действием УКИ предвательно нанесенной на поверхность кремния нанометровой пленки твердого селена происходит и внедрение атомов селена в поверхностный слой, и формирование в нем структуры микроконусов кремния. В результате сверхбыстрого (пикосекундного) плавления тонкого допируемого и микроструктурируемого поверхностного слоя мишени кремния под действием УКИ, а также очень быстрого (в течение нескольких наносекунд) его затвердевания в ходе охлаждения за счет теплопроводности, испарительных и радиационных потерь в него можно ввести высокие неравновесные концентрации серы или селена, недостижимые путем ионной имплантации.

Основным недостатком данного способа формирования микроструктурированных и высокодопированных серой или селеном слоев на поверхности кремния является ограничение на концентрацию допирующего агента (степень допирования), которую можно ввести в кремниевую мишень - до 0.7 ат.% [2, 3]. Допирование играет определяющую роль в создании в запрещенной зоне ниже дна зоны проводимости кремния глубоких донорных состояний [5] (в данном случае - серы или селена), определяющих несвойственное чистому кремнию поглощение допированного материала в ближней ИК области [6]. Степень допирования определяет число (плотность) донорных состояний и, в итоге, коэффициент поглощения допированного материала в ближней ИК области. В случае допирования из газовой фазы (например, серосодержащими соединениями) [2], при отсутствии предварительной конденсации допирующих соединений перед воздействием УКИ эффективные соударения молекул, содержащих допирующий элемент, с поверхностью мишени или частицами абляционного факела циклически происходят после воздействия каждого УКИ в некотором временном окне, которое определяется временем остывания поверхности или временем жизни (расширения, охлаждения и конденсации) абляционного факела. При исходной невысокой плотности молекул, содержащих допирующий элемент, в реакционной газовой смеси при давлении <1 атм над облучаемой множественными УКИ поверхностью кремния и узком - порядка наносекунд - временном окне для допирования его кинетика оказывается довольно медленной в силу относительно невысокого среднего потока допирующего агента и малого времени его внедрения в мишень. В результате для достижения высоких степеней допирования требуется неоправданно большое время. В более выигрышном случае - при обработке (нагревании, плавлении и абляции) под действием УКИ предварительно нанесенной на поверхность кремния нанометровой пленки твердого селена первоначально допирующий агент в избытке присутствует на поверхности кремния и кинетика его внедрения определяется только указанным временным окном. Однако в последнем случае абляция мишени начинается именно с этой пленки селена и поэтому сразу начинается невосполнимый расход (удаление во внешнюю среду) этого допирующего агента, а далее уже введенное в мишень количество селена в процессе последующего микроструктурирования мишени может только уменьшаться вследствие частичного необратимого (без переосаждения на микроконусах) абляционного удаления уже допированного материала мишени и составляет, в итоге, ~0.1%. Данный недостаток устраняется с помощью предложенного изобретения, включающего новый способ формирования микроструктурированных и высокодопированных серой слоев на поверхности кремния.

Задача, решаемая изобретением, заключается в устранении недостатка прототипа, то есть в многократном повышении степени допирования поверхностного слоя кремния атомами серы в процессе его микроструктурирования под действием УКИ.

Для решения поставленной задачи предложено выбрать особый тип активной реакционной среды - жидкую фазу серосодержащего соединения с высоким содержанием серы, а также режим воздействия УКИ, параметры которого выбраны так, чтобы излучение УКИ проникало к мишени сквозь жидкую фазу серосодержащего соединения, а энергия, частота следования и фокусировка УКИ обеспечивали абляционное микроструктурирование поверхности кремния [7].

Решение поставленной задачи демонстрируется следующими примерами. Пластина недопированного кремния с полированной поверхностью оптического качества сначала облучается в режиме сканирования фокусированным излучением УКИ титан-сапфирового лазера с центральной длиной волны 744 нм, длительностью 100-110 фс и энергией 0.3-5 мДж, так чтобы обеспечить интенсивную абляцию и микроструктурирование поверхности кремния (Фиг.1) при плотности энергии УКИ в диапазоне ≈0.3-0.7 Дж/см2 в зависимости от числа лазерных импульсов (обычно - в диапазоне 102-103), падающих в каждую точку поверхности. Затем эта пластина кремния с микроструктурированной поверхностью погружается в ячейку с серосодержащим соединением - жидким сероуглеродом CS2 - на глубину 3-4 мм, и ее микроструктурированная поверхность повторно облучается при таких же условиях для абляционного допирования уже подготовленной микроструктурированной поверхности. Высокотемпературное испарение жидкого сероуглерода и термическое разложение молекул CS2, как минимум, до двухатомной молекулы CS и атома серы при взаимодействии с нагретой поверхностью твердого или расплавленного кремния [8] или с атомной и кластерно-капельной компонентами абляционного факела кремния обеспечивают высокую - близкую к твердофазной - концентрацию атомов серы на поверхности кремния, что выражается в чрезвычайно высокой скорости и результирующей рекордной степени допирования (до 5%), согласно данным энергодисперсионного рентгеновского анализа допированного слоя. Соответствующий спектр (а) и таблица (б) с результатами анализа по содержанию кремния, кислорода и серы в поверхностном слое облученного материала приведены на Фиг.2. Иначе микроструктурирование кремния под действием УКИ может сразу - в одну стадию - проводиться в жидком сероуглероде для одновременного допирования его микроструктурируемой поверхности.

Допирование серой приводит к появлению в ИК-спектре пропускания обработанного материала (обозначение «эксп») - по сравнению с табулированным спектром пропускания недопированного кристаллического кремния (обозначение «табул») - характерного провала пропускания в области 1.4-2 мкм, отмеченного стрелкой на Фиг.3, появление которого согласуется с образованием глубоких донорных S-центров серы в кремнии на глубине 0.7 эВ ниже дна зоны проводимости [5]. Обработка ИК-спектра для допированного серой кремния для характерной глубины допированного слоя ~100 нм, измеренной нами методом обратного резерфордовского рассеяния α-частиц, показывает более существенный, чем достигнутый ранее [2, 3, 6], коэффициент поглощения кремния в ИК-области в диапазоне 1.4-4 мкм. Соответствующие спектры коэффициента поглощения для недопированного кристаллического кремния (сплошная кривая) и его допированного слоя со степенью допирования ≈5 ат.% (пунктирная кривая с указанной полосой поглощения глубоких донорных S-центров серы) приведены на Фиг.4.

Таким образом, предлагаемое данным изобретением многократное (почти на порядок величины) повышение степени допирования поверхностного слоя кремния атомами серы в процессе его микроструктурирования под действием УКИ реализуется практически и предполагает существенное повышение ИК фоточувствительности кремния для возможных применений, например, в солнечной энергетике и оптоэлектронике приборов ночного видения.

Литература

1. N.C.Lindquist, P.Nagpal, К.М.McPeak, D.J Norris, S.-H. Oh, Engineering metallic nanostructures for plasmonics and nanophotonics, Rep.Prog. Phys. 75, 036501 (2012).

2. C.H.Crouch, J.E.Carey, M.Shen, E.Mazur, F.Y.Genin, Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation, Appl. Phys. A 79. 1635-1641 (2004).

3. M.J.Smith, M.Winkler, M.-J.Sher, Y.-T.Ling, E. Mazur, S.Gradecak, The effect of a thin dopant precursor on the structure and properties of femtosecond-laser irradiated silicon, Applied Physics A 105, 795-800 (2011).

4. P.G.Maloney, P.Smith, V. King, C.Billman, M.Winkler, E.Mazur, Emissivity of microstructured silicon. Applied Optics 49, N7, 1065-1068 (2010).

5. П.Ю.M. Кардона, Основы физики полупроводников, Москва, Физматлит, 2002, гл.4.

6. М.А.Sheehy, L.Winston, J.E.Carey, C.M.Friend, E.Mazur, Role of the background gas in the morphology and optical properties of laser-microstructured silicon, Chem. Mater. 17, 3582-3586 (2005).

7. E.B.Голосов, A.A.Ионин, Ю.Р.Колобов, С.И.Кудряшов, А.Е.Лигачев, С.В.Макаров, Ю.Н.Новоселов, Л.В.Селезнев, Д.В.Синицын. Формирование квазипериодических нано- и микроструктур на поверхности кремния под действием ИК и УФ фемтосекундных лазерных импульсов. Квант. эл-ка 41 (9), 829-834 (2011).

8. А.А.Ионин, С.И.Кудряшов, Л.В.Селезнев, Д.В.Синицын, А.Ф.Бункин, В.Н.Леднев, С.М.Першин, Термическое плавление и абляция поверхности кремния фемтосекундным лазерным излучением, ЖЭТФ 143, №3, 403-422 (2013).


СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
СПОСОБ ФОРМИРОВАНИЯ МИКРОСТРУКТУРИРОВАННОГО И ВЫСОКОДОПИРОВАННОГО СЛОЯ НА ПОВЕРХНОСТИ КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 49.
10.07.2014
№216.012.dc2a

Радиационно-стойкий детектор проникающих излучений

Изобретение относится к области ядерной физики и может быть использовано в широком спектре приложений регистрации мощных проникающих излучений, в частности в активных зонах атомных электростанций. Сущность изобретения заключается в том, что регистрируют фотоны, возникающие в результате...
Тип: Изобретение
Номер охранного документа: 0002522140
Дата охранного документа: 10.07.2014
20.08.2014
№216.012.e9d1

Лазерная электронно-лучевая трубка

Изобретение относится к квантовой электронике и электронной технике и может быть использовано в приборах со сканирующим световым лучом. Лазерная электронно-лучевая трубка выполнена в виде вакуумируемой колбы с выходным оптическим окном и имеет электронно-оптическую ось, вдоль которой...
Тип: Изобретение
Номер охранного документа: 0002525665
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9da

Способ повышения плотности мощности светового излучения внутри среды

Изобретение относится к оптике и касается способа повышения плотности мощности светового излучения внутри среды. Способ включает в себя формирование среды в виде многослойной периодической структуры, имеющей в спектре пропускания запрещенную зону, а также узкие резонансные пики полного...
Тип: Изобретение
Номер охранного документа: 0002525674
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fa13

Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки

Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота. Устройство...
Тип: Изобретение
Номер охранного документа: 0002529865
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be6

Способ формирования субдифракционной квазирегулярной одно-и двумерной нанотекстуры поверхности материалов и устройство для его осуществления

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий. Данное изобретение позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002534454
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.394c

Способ стабилизации эмульсий и коллоидных растворов и устройство для его осуществления

Изобретение относится к технологическим химическим процессам, в частности к нефтехимии, и может быть использовано для стабилизации различных эмульсий и коллоидных растворов, например, при производстве коллоидных и полимерных дисперсий, нефтяных масел, смазочных материалов, технических...
Тип: Изобретение
Номер охранного документа: 0002546156
Дата охранного документа: 10.04.2015
10.08.2015
№216.013.6c97

Способ получения биодизельного топлива из сырья растительного происхождения

Изобретение описывает способ получения биодизельного топлива из сырья растительного происхождения, включающий обработку смеси растительного масла, спирта и щелочи физическим воздействием, при этом обработку проводят потоком СВЧ-энергии, а в качестве спирта используют изопропанол, причем смесь...
Тип: Изобретение
Номер охранного документа: 0002559357
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
Показаны записи 11-20 из 40.
10.07.2014
№216.012.dc2a

Радиационно-стойкий детектор проникающих излучений

Изобретение относится к области ядерной физики и может быть использовано в широком спектре приложений регистрации мощных проникающих излучений, в частности в активных зонах атомных электростанций. Сущность изобретения заключается в том, что регистрируют фотоны, возникающие в результате...
Тип: Изобретение
Номер охранного документа: 0002522140
Дата охранного документа: 10.07.2014
20.08.2014
№216.012.e9d1

Лазерная электронно-лучевая трубка

Изобретение относится к квантовой электронике и электронной технике и может быть использовано в приборах со сканирующим световым лучом. Лазерная электронно-лучевая трубка выполнена в виде вакуумируемой колбы с выходным оптическим окном и имеет электронно-оптическую ось, вдоль которой...
Тип: Изобретение
Номер охранного документа: 0002525665
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9da

Способ повышения плотности мощности светового излучения внутри среды

Изобретение относится к оптике и касается способа повышения плотности мощности светового излучения внутри среды. Способ включает в себя формирование среды в виде многослойной периодической структуры, имеющей в спектре пропускания запрещенную зону, а также узкие резонансные пики полного...
Тип: Изобретение
Номер охранного документа: 0002525674
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fa13

Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки

Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота. Устройство...
Тип: Изобретение
Номер охранного документа: 0002529865
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be6

Способ формирования субдифракционной квазирегулярной одно-и двумерной нанотекстуры поверхности материалов и устройство для его осуществления

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий. Данное изобретение позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002534454
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.394c

Способ стабилизации эмульсий и коллоидных растворов и устройство для его осуществления

Изобретение относится к технологическим химическим процессам, в частности к нефтехимии, и может быть использовано для стабилизации различных эмульсий и коллоидных растворов, например, при производстве коллоидных и полимерных дисперсий, нефтяных масел, смазочных материалов, технических...
Тип: Изобретение
Номер охранного документа: 0002546156
Дата охранного документа: 10.04.2015
10.08.2015
№216.013.6c97

Способ получения биодизельного топлива из сырья растительного происхождения

Изобретение описывает способ получения биодизельного топлива из сырья растительного происхождения, включающий обработку смеси растительного масла, спирта и щелочи физическим воздействием, при этом обработку проводят потоком СВЧ-энергии, а в качестве спирта используют изопропанол, причем смесь...
Тип: Изобретение
Номер охранного документа: 0002559357
Дата охранного документа: 10.08.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
+ добавить свой РИД