×
10.05.2015
216.013.4b47

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ

Вид РИД

Изобретение

№ охранного документа
0002550778
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны. Зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги. 2 ил.
Основные результаты: Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

Изобретение относится к измерительной технике и может быть применено для бесконтактного определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Известны различные способы определения состояния дорожных покрытий, основанные на различных принципах и связанные с измерением электрической емкости (US 5398547, 21.03.1995), электрической проводимости и сопротивления (US 4745803, 24.05.1988; US 4287472, 01.09.1981), с применением ультразвуковых волн (US 5095754, 17.03.1992), световых волн, в частности, инфракрасного излучения и др. (Winter В. Sensoren warnen vor Wasser oder Eis auf der Strasse // Sensor magazine. 1998. N.2. P.8). Однако они имеют определенные недостатки: некоторые из них являются контактными способами и характеризуются износом компонент применяемых измерительных устройств, связаны с применением линий связи между датчиками и электронными блоками; другие способы, являясь бесконтактными, чувствительны к погодным условиям и не могут определять толщину водного слоя.

Известны также микроволновые способы определения состояния дорожного покрытия (US 4690553, 01.09.1987; US 5686841, 11.11.1997; Hertl S., Schaffar G., Stori H. Contactless determination of the properties of water films on road // Journal of Physics E.: Scientific Instruments. 1988. Vol.21. N.10. P.955-958). Эти способы и реализующие их устройства позволяют производить бесконтактные измерения, определять и идентифицировать наличие воды, снега или льда на поверхности дорожного полотна и измерять их толщину. Однако известные способы имеют существенный недостаток: они не обеспечивают высокую точность измерения толщины слоя вещества (воды, снега или льда), который может быть очень тонким. Кроме того, эти способы достаточно сложны и имеют высокую стоимость реализации.

Известен также способ (US 5497100, 05.03.1996), который заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, получении множества значений амплитуд разностных сигналов, соответствующих принимаемым и излучаемых волнам, сравнении данного множества с множеством известных моделей поверхности и определении состояния дороги по результатам этого сравнения. Данный способ характеризуется невысокой точностью и сложен в реализации: процесс получения полезной информации связан со сложной функциональной обработкой принимаемых сигналов.

Известно также техническое решение (RU 2473888 C1, 27.01.2013), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, встраивании в поверхностный слой контролируемого участка дороги резонатора с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, измерении мощности отраженных от резонатора и принимаемых электромагнитных волн и по суждении о состоянии поверхности дороги по величине частоты, соответствующей минимуму принимаемой мощности. При этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги.

Данный способ, как и вышеупомянутые способы, сложен в реализации: процесс получения полезной информации связан с применением генератора частотно-модулированных колебаний, со сложной функциональной обработкой принимаемых сигналов. Также необходимо применение пассивного резонатора - отражателя электромагнитных волн, встраиваемого в полотно дороги на его измерительном участке, что также усложняет реализацию данного способа.

Поэтому существует необходимость нахождения технического решения, свободного от указанных недостатков и обеспечивающего возможность проведения измерений более простыми средствами.

Техническим результатом настоящего изобретения является упрощение процесса определения состояния покрытия дороги.

Технический результат в предлагаемом способе определения состояния поверхности дороги достигается тем, что контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, при этом зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

Предлагаемый способ поясняется чертежами.

На фиг.1 приведена схема размещения устройства для реализации способа.

На фиг.2 изображена структурная схема устройства для реализации способа.

На чертежах показаны СВЧ-устройство 1, штанга 2, дорожное покрытие 3, слой воды, льда или снега 4, генератор 5, детектор 6, антенна 7.

Сущность предлагаемого способа состоит в следующем.

Согласно данному способу контролируемый участок поверхности дороги зондируют по нормали к ней электромагнитными волнами фиксированной частоты, принимают отраженные от этого участка поверхности электромагнитные волны, производят смешение зондирующих и принимаемых электромагнитных волн. Производят измерение фазового сдвига зондирующих и отраженных волн с применением гомодинной интерференционной измерительной системы на выходе ее смесителя. При этом предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

В отсутствие какого-либо покрывающего слоя на поверхности дороги этот основной фазовый сдвиг определяется изменением фазы в воздушном пространстве между измерительным устройством и поверхностью дороги. При наличии же какого-либо слоя на поверхности дороги, а именно присутствием на ней слоя воды, льда или снега, появляется дополнительный фазовый сдвиг по отношению к указанному основному фазовому сдвигу. Напряжение на выходе смесителя данного измерительного устройства зависит от величины суммарного фазового сдвига. Этот фазовый сдвиг изменяется в зависимости от толщины покрывающего поверхность дороги слоя. Он также зависит и от электрофизических параметров, в частности диэлектрической проницаемости покрывающего слоя (воды, льда или снега).

В отсутствие какого-либо слоя на поверхности дороги амплитуда I0 принимаемого сигнала, соответствующего интерференции зондирующих и отраженных волн, есть:

где m - волновое число, φ - основной фазовый сдвиг волн в воздушном пространстве, K - постоянный коэффициент.

Если на поверхности дороги имеется слой воды, льда или снега, то амплитуда I принимаемого сигнала есть:

Здесь Δφ - дополнительный фазовый сдвиг, вызванный присутствием покрывающего слоя (воды, льда или снега) на поверхности дороги.

Как следует из (1) и (2), разность между I0 и I выражается так:

Если Δφ<φ≈π/2, то

Дополнительный фазовый сдвиг Δφ выражается через параметры поверхностного слоя дороги:

где β=2πf√ε/c - волновое число для слоя, f - частота, c - скорость света в свободном пространстве, ε - диэлектрическая проницаемость контролируемого поверхностного слоя.

Величина дополнительного фазового сдвига Δφ изменяется с изменением параметров (толщины, фазового состояния вещества, примесей в нем, температуры) покрывающего дорогу слоя. Поэтому данные параметры возможно определить по характеристикам интерференционной картины зондирующих и отраженных волн.

Используя соотношение (5), можно найти величину фазового сдвига Δφ для различных состояний поверхности дороги, характеризуемых присутствием слоя воды или льда. В частности, можно зафиксировать переход слоя воды в ледяной слой, что является важным информативным параметром.

Для слоя льда (ε=3,1) и при f=10,525 ГГц из формулы (5) следует

где d выражается в метрах (м). If d=1 мкм, то Δφ=0,02°; если d=1 мм, то Δφ=20°.

Для водного слоя (ε≈80) и f=10,525 GHz получим

где d выражается в метрах (м). Если d=1 мкм, то Δφ=0.11°; если d=1 мм, то Δφ=110°.

Эти оценки показывают, что слои вода и льда на поверхности дороги могут быть обнаружены и идентифицированы, производя измерения фазового сдвига Δφ.

На фиг.1 приведено СВЧ-устройство 1 для реализации данного способа. Устройство может быть закреплено на конце штанги 2 и размещено над измерительным участком поверхности дороги 3, обеспечивая зондирование этого участка по нормали к нему. Для размещения устройства могут быть также использованы, при наличии и такой возможности, существующие мосты над дорогами.

СВЧ-устройство 1 может быть применено для определения состояния поверхности дороги 3 (например, асфальта) с возможным слоем 4 воды, льда или снега посредством определения фазового сдвига зондирующих и отраженных электромагнитных волн. Устройство 1 содержит генератор 5 на диоде Ганна и смесительный диод в качестве детектора 6 (фиг.2). С помощью антенны 7 (в простейшем случае - это открытый конец волновода) излучаются электромагнитные волны, которые направляются в сторону поверхности дороги 3 по нормали к ней. Отраженные волны поступают на детектор 6. Их частота остается равной частоте излучаемых волн; интерференция зондирующих и отраженных волн образует соответствующую картину стоячих (точнее, смешанных) волн в пространстве распространения этих волн, что регистрируется детектором 6.

Согласно данному способу предварительно определяют основной фазовый сдвиг φ зондирующих и отраженных волн в воздушном пространстве в отсутствие покрывающего слоя на поверхности дороги, затем определяют дополнительный фазовый сдвиг Δφ этих волн при наличии этого слоя и по величине дополнительного фазового сдвига Δφ по отношению к основному фазовому сдвигу φ судят о состоянии поверхности дороги.

Разностный сигнал на выходе детектора 6 соответствует указанной интерференции зондирующих и отраженных волн. Амплитуда этого выходного сигнала фиксируется с применением смесительного диода; его выходной сигнал есть напряжение постоянного тока, зависящее от измеряемой толщины воды или льда на поверхности дороги (или соответствующее их отсутствию). Параметры генератора могут быть, в частности, следующими: частота 10,525 ГГц, выходная мощность 8 мВ, напряжение источника питания +8 В.

Для определения состояния поверхности дороги, обусловленного наличием на ее поверхности слоя осадков или его отсутствием, необходимо знать электрофизические параметры возможных веществ на его поверхности - воды, снега и льда в СВЧ-диапазоне частот электромагнитных волн. Поскольку электрофизические параметры воды, снега и льда существенно отличаются от единицы (что соответствует отсутствию такого слоя на дороге) и друг от друга (Nyfors E.G., Vainikainen P. Industrial microwave sensors. Artech House, Inc. 1989. 351 p.), то значения фазового сдвига Δφ и диапазон его изменения существенно отличаются при наличии того или иного слоя на поверхности дороги или при его отсутствии. Это позволяет как определить, какой вид слоя осадков (вода, снег или лед) присутствует на дороге (или отсутствует), а также, по величине изменения Δφ, найти его толщину.

Таким образом, данный способ позволяет достаточно просто и с высокой точностью определять состояние поверхности дороги. Он дает возможность фиксировать наличие или отсутствие на поверхности дороги слоя воды, снега или льда и производить их идентификацию.

Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 142.
23.02.2019
№219.016.c6ad

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. В способе используют сигналы текущего путевого угла и заданного значения путевого угла, которые совместно с сигналами угловой скорости судна и угла перекладки руля используют для формирования...
Тип: Изобретение
Номер охранного документа: 0002465169
Дата охранного документа: 27.10.2012
23.02.2019
№219.016.c6bb

Оптико-электронный расходомер потока газа или жидкости

Изобретение относится к области тепловой меточной расходометрии и может быть использовано для определения объемного или массового расхода газа или жидкости. Сущность: расходомер содержит измерительный трубопровод (1) с выравнивателем потока (2) на входе, управляемый генератор (3) тепловой метки...
Тип: Изобретение
Номер охранного документа: 0002460047
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf3e

Способ определения плотности диэлектрических жидких веществ

Предлагаемое изобретение относится к области измерительной техники. Способ определения плотности диэлектрических жидких веществ, протекающих по диэлектрическому трубопроводу, при котором зондируют вещество электромагнитными колебаниями и принимают распространяющиеся по трубопроводу колебания....
Тип: Изобретение
Номер охранного документа: 0002404421
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d4b5

Счетчик-расходомер

Изобретение может быть использовано для измерения объемного и массового расхода в технологических трубопроводах, а также измерения плотности и количества газа или жидкости в узлах учета энергоресурсов для коммерческого расчета. Расходомер содержит сужающее устройство (2), датчик перепада...
Тип: Изобретение
Номер охранного документа: 0002396517
Дата охранного документа: 10.08.2010
08.03.2019
№219.016.d4b8

Способ измерения сопротивления и устройство для его реализации

Изобретение относится к области измерительной техники. Последовательно осуществляют три такта измерения периода колебаний, зависящего от значения измеряемого сопротивления при различной конфигурации частотно-зависимой цепи. В первом такте формируют измеряемую величину , где R - первое эталонное...
Тип: Изобретение
Номер охранного документа: 0002395098
Дата охранного документа: 20.07.2010
08.03.2019
№219.016.d525

Способ преобразования непрерывного сигнала в частоту и устройство для его осуществления

Изобретение относится к способам и устройствам преобразования сигнала. Техническим результатом является линеаризация преобразований от входного параметра до частотного выхода. Предложено устройство преобразования непрерывного сигнала в частоту, содержащее измерительное устройство с квадратичным...
Тип: Изобретение
Номер охранного документа: 0002413269
Дата охранного документа: 27.02.2011
08.03.2019
№219.016.d54d

Измеритель частоты резонаторного датчика технологических параметров

Изобретение относится к измерительной технике. Измеритель частоты резонаторного датчика технологических параметров содержит первый сумматор, соединенный соответственно первым и вторым плечами с резонаторным датчиком и выходом перестраиваемого по частоте генератора электромагнитных колебаний, и...
Тип: Изобретение
Номер охранного документа: 0002456556
Дата охранного документа: 20.07.2012
08.03.2019
№219.016.d563

Способ обработки и анализа изображений кометоподобных объектов, полученных методом "днк-комет"

Способ заключается в том, что в компьютер с биологического препарата, установленного на флуоресцентный микроскоп с видеокамерой, вводят изображение с кометоподобными объектами - «кометами», представляющими собой набор слитых и отдельностоящих флуоресцирующих точек разной яркости. Затем...
Тип: Изобретение
Номер охранного документа: 0002404453
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d598

Датчик малых расходов жидкости

Изобретение относится к области расходометрии и может быть использовано для определения расхода слабых (порядка десятков - сотен миллилитров в секунду) потоков жидкости. Сущность: устройство содержит резистивный нагреватель, установленный на трубе с потоком жидкости, калориметрический...
Тип: Изобретение
Номер охранного документа: 0002469277
Дата охранного документа: 10.12.2012
08.03.2019
№219.016.d5b2

Устройство для получения электрической энергии при механических колебаниях

Изобретение относится к электротехнике, к устройствам для получения электрической энергии от двух расположенных рядом элементов при их механическом колебании относительно друг друга и может быть использовано, в частности, для получения энергии во время движения железнодорожных составов за счет...
Тип: Изобретение
Номер охранного документа: 0002468491
Дата охранного документа: 27.11.2012
Показаны записи 71-80 из 99.
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d0f

Способ измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656016
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d10

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656023
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d15

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656012
Дата охранного документа: 30.05.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
09.08.2018
№218.016.7a52

Способ измерения давления

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны,...
Тип: Изобретение
Номер охранного документа: 0002663552
Дата охранного документа: 07.08.2018
26.10.2018
№218.016.969e

Способ измерения скорости потока диэлектрического вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002670707
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
+ добавить свой РИД