×
10.05.2015
216.013.4a8b

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СЛЕДОВЫХ КОМПОНЕНТОВ МЕТОДОМ ЛАЗЕРНО-ИСКРОВОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ

Вид РИД

Изобретение

№ охранного документа
0002550590
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности пробы, причем величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы. Изобретение обеспечивает увеличение чувствительности и экспрессности анализа при взаимодействии двух импульсов лазерного излучения на пробу.
Основные результаты: Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.

Область техники

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества, в геологоразведочных службах для выявления геохимических аномалий в почвах и санитарных службах для контроля загрязнения окружающей среды неорганическими токсикантами.

Уровень техники

Метод лазерно-искровой эмиссионной спектрометрии (ЛИЭС) основан на испарении, атомизации и возбуждении пробы мощным лазерным излучением, что приводит к появлению характеристических эмиссионных спектров светящейся лазерно-индуцированной плазмы. Основная проблема данного метода состоит в том, что свечение атомных и ионных линий в лазерной плазме наблюдается в коротком временном промежутке и налагается на непрерывное фоновое излучение лазерной плазмы и необходимо увеличивать интенсивность свечения лазерной плазмы и повысить чувствительность метода по обнаружению элементов.

Известны способы определения содержания следовых компонентов - это атомно-эмиссионный метод с индуктивно-связанной плазмой (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.3:3.11-98 от 26.10.2005) и пламенный атомно-абсорбционный метод (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.2:2.3:3.36-2002 от 25.10.2011). Недостатком данных способов является длительная и сложная подготовка исследуемых проб, включающая переведение анализируемого пробы в раствор, использование спектрально чистых газов и реагентов на этапе проведения анализов, длительность проведения анализов.

Известен способ элементного состава пробы и определения следовых компонентов анализируемой пробы методом ЛИЭС (патент RU №2436070, G01N 21/00, опубл. 10.12.2011 г.), осуществляемый фемтосекундным лазерным импульсом, разделенным на 2 пучка одинаковой мощности. Недостатком известного способа является высокая стоимость фемтосекундного комплекса, а также повышенные требования к помещению: отсутствие пыли для предотвращения повреждения оптических элементов при прохождении фемтосекундных импульсов, отсутствие вибраций, что делает невозможным его применение в полевых условиях.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу (патент RU №2300094, G01N 21/36, опубл. 25.05.2007 г.). При этом воздействие осуществляется импульсным наносекундным лазером, у которого генерация импульсов осуществляется пассивным затвором на центрах окраски. В результате образуется 2-8 следующих друг за другом гигантских импульсов с интервалом 10-30 мкс на фоне импульса свободной генерации, который с помощью системы фокусировки направляется на исследуемую пробу, образуя лазерный факел, излучение которого регистрируют и затем по полученным эмиссионным спектрам определяют элементный состав вещества.

Недостатком прототипа является невозможность контролировать время следования и количество испаряющих лазерных импульсов. Это исключает возможность выбора межимпульсной задержки для устранения влияния интенсивного фонового излучения, а также регистрировать аналитические эмиссионные линии во время их наибольшей интенсивности.

Раскрытие изобретения

Цель изобретения - разработка пригодного для полевых работ способа лазерно-искрового эмиссионного анализа твердых веществ с повышенной чувствительностью за счет использования двухимпульсного воздействия на пробу и использования метода регулирования межимпульсной задержки на основании данных о развитии плазмы в одноимпульсном режиме.

Поставленная цель достигается тем, что в способе определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии исследуемая проба подвергается действию последовательных лазерных импульсов, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрации эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Одним из отличительных признаков заявляемого изобретения является двухимпульсный способ воздействия на пробу с регулируемой межимпульсной задержкой за счет использования синхронизуемых электрооптических затворов. Между импульсами создается временная задержка с помощью двухканального генератора импульсов, который запускается от вспышки накачивающей лампы первого лазера, открывает затвор первого лазера для генерации импульса и с заданной межимпульсной задержкой открывает затвор второго лазера.

При воздействии первого импульса происходит оптический пробой и образуется лазерная плазма, воздействие второго импульса вызывает неравномерное увеличение интенсивности спектра лазерной плазмы, механизм которого остается неясным и его невозможно заранее предсказать [Кремерс Д., Радзиемски Л. Лазерно-искровая эмиссионная спектроскопия. Техносфера, М.: 2009, С.77]. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы.

При данном способе проведения ЛИЭС анализа увеличивается интенсивность аналитических эмиссионных линий и уменьшается интенсивность непрерывного свечения лазерной плазмы. Это позволяет повысить чувствительность определения следовых компонентов в пробе. Также предложенный способ не требует продолжительных временных исследований развития лазерного факела для определения параметров межимпульсной задержки, что сокращает время проведения анализа. Заявляемый способ позволяет повысить чувствительность и экспрессность анализа при взаимодействии двух импульсов лазерного излучения на пробу, что является техническим результатом заявляемого решения.

Осуществление изобретения

Пример 1

Описанную форму выполнения предлагаемого способа использовали для количественного спектрального определения свинца, цинка и бериллия в почвах, что привело к увеличению интенсивности аналитических линий. Анализируемая проба помещалась на препаратный столик, излучение второй (532 нм) и третьей гармоник (355 нм) Nd:АИГ лазера с электрооптическим затвором направлялось соосно с помощью диэлектрического зеркала (пропускание 100% при 355 нм, 100% отражение при 532 нм) на фокусирующую линзу (F=150 мм) и фокусировалось на поверхности пробы. Излучение лазерно-индуцированной плазмы проецировалась с помощью двухлинзового конденсора на щель спектрографа и регистрировалось с помощью стробируемой электронно-оптической цифровой камеры. Межимпульсные задержки были выбраны равными времени наблюдения наибольшего соотношения сигнал/шум в одноимпульсном режиме воздействия на пробу. При выбранных межимпульсных задержках 3 мкс, 1 мкс и 0,75 мкс наблюдалось, соответственно, наибольшее увеличение интенсивности аналитических линий Pb I 405,78 нм в 10 раз, Zn I 213,83 нм в 10 раз и Be II 313,10 нм в 5 раз. При выборе меньших или больших значений межимпульсной задержки увеличение интенсивности линий указанных элементов была меньше.

Изобретение может быть использовано для экспрессного количественного определения следовых компонентов почв в полевых условиях.

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.
Источник поступления информации: Роспатент

Показаны записи 151-156 из 156.
04.04.2018
№218.016.2f70

Способ восстановления кожного покрова

Изобретение относится к медицине и может быть использовано для восстановления кожного покрова у субъекта. Для этого в область повреждения кожи вводят суспензию, содержащую биорезорбируемый носитель с композицией клеток фибробластов и кераноцитов на поверхности. При этом носитель представляет...
Тип: Изобретение
Номер охранного документа: 0002644633
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.302a

Детонационный двигатель

Изобретение относится к конструкции детонационного двигателя, использующего твердое топливо. Техническим результатом, достигаемым при использовании заявляемого изобретения, является увеличение КПД детонационного двигателя за счет использования многократного отражения детонационной волны от...
Тип: Изобретение
Номер охранного документа: 0002645099
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3123

Массажное устройство на основе магнитной жидкости

Изобретение относится к области медицинской техники, в частности к массажному устройству на основе магнитной жидкости, и предназначено для физиотерапии, лечения и предотвращения пролежней у лежачих больных. Массажное устройство включает массажный блок и блок управления. Массажный блок содержит...
Тип: Изобретение
Номер охранного документа: 0002644931
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3196

Способ формирования биорезорбируемых фиброиновых пленок с использованием метакрилированного желатина

Изобретение относится к биотехнологии и медицине, а точнее к созданию биорезорбируемых, биосовместимых, фотоотверждаемых композитных пленок. Способ получения биорезорбируемых фиброиновых пленок включает стадии: метакрилирования желатина путем растворения навески сухого желатина в К-фосфатном...
Тип: Изобретение
Номер охранного документа: 0002645200
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.31e9

Перовскитная солнечная ячейка и способ ее изготовления

Изобретение относится к технологиям преобразования солнечной энергии в электрическую. Перовскитная солнечная ячейка представляет собой слоистую структуру, включающую, по меньшей мере, три слоя: два проводящих слоя - р-проводящий и n-проводящий, а также размещенный между ними светопоглощающий...
Тип: Изобретение
Номер охранного документа: 0002645221
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.3388

Производные полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновых кислот) и способ их получения

Изобретение относится к производному полигетероарил-бис[карбонилнитрилоди(метилен)]тетракис(фосфоновой кислоты), которое может применяться для флуоресцентного анализа, формулы где, когда X и Z образуют фрагмент -СН=СН-, R представляет собой Cl; когда X и Z представляют собой Н, R представляет...
Тип: Изобретение
Номер охранного документа: 0002645670
Дата охранного документа: 27.02.2018
+ добавить свой РИД