×
10.05.2015
216.013.4a8b

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СЛЕДОВЫХ КОМПОНЕНТОВ МЕТОДОМ ЛАЗЕРНО-ИСКРОВОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ

Вид РИД

Изобретение

№ охранного документа
0002550590
Дата охранного документа
10.05.2015
Аннотация: Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества. Способ основан на действии двух последовательных коллинеарных лазерных импульсов, направленных в одну точку поверхности пробы, причем величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы. Изобретение обеспечивает увеличение чувствительности и экспрессности анализа при взаимодействии двух импульсов лазерного излучения на пробу.
Основные результаты: Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.

Область техники

Изобретение относится к аналитической атомной спектрометрии и может быть использовано в спектральном анализе для экспрессного способа определения элементного состава вещества, в геологоразведочных службах для выявления геохимических аномалий в почвах и санитарных службах для контроля загрязнения окружающей среды неорганическими токсикантами.

Уровень техники

Метод лазерно-искровой эмиссионной спектрометрии (ЛИЭС) основан на испарении, атомизации и возбуждении пробы мощным лазерным излучением, что приводит к появлению характеристических эмиссионных спектров светящейся лазерно-индуцированной плазмы. Основная проблема данного метода состоит в том, что свечение атомных и ионных линий в лазерной плазме наблюдается в коротком временном промежутке и налагается на непрерывное фоновое излучение лазерной плазмы и необходимо увеличивать интенсивность свечения лазерной плазмы и повысить чувствительность метода по обнаружению элементов.

Известны способы определения содержания следовых компонентов - это атомно-эмиссионный метод с индуктивно-связанной плазмой (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.3:3.11-98 от 26.10.2005) и пламенный атомно-абсорбционный метод (Методика, внесенная в государственный реестр ПНД Ф 16.1:2.2:2.3:3.36-2002 от 25.10.2011). Недостатком данных способов является длительная и сложная подготовка исследуемых проб, включающая переведение анализируемого пробы в раствор, использование спектрально чистых газов и реагентов на этапе проведения анализов, длительность проведения анализов.

Известен способ элементного состава пробы и определения следовых компонентов анализируемой пробы методом ЛИЭС (патент RU №2436070, G01N 21/00, опубл. 10.12.2011 г.), осуществляемый фемтосекундным лазерным импульсом, разделенным на 2 пучка одинаковой мощности. Недостатком известного способа является высокая стоимость фемтосекундного комплекса, а также повышенные требования к помещению: отсутствие пыли для предотвращения повреждения оптических элементов при прохождении фемтосекундных импульсов, отсутствие вибраций, что делает невозможным его применение в полевых условиях.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу (патент RU №2300094, G01N 21/36, опубл. 25.05.2007 г.). При этом воздействие осуществляется импульсным наносекундным лазером, у которого генерация импульсов осуществляется пассивным затвором на центрах окраски. В результате образуется 2-8 следующих друг за другом гигантских импульсов с интервалом 10-30 мкс на фоне импульса свободной генерации, который с помощью системы фокусировки направляется на исследуемую пробу, образуя лазерный факел, излучение которого регистрируют и затем по полученным эмиссионным спектрам определяют элементный состав вещества.

Недостатком прототипа является невозможность контролировать время следования и количество испаряющих лазерных импульсов. Это исключает возможность выбора межимпульсной задержки для устранения влияния интенсивного фонового излучения, а также регистрировать аналитические эмиссионные линии во время их наибольшей интенсивности.

Раскрытие изобретения

Цель изобретения - разработка пригодного для полевых работ способа лазерно-искрового эмиссионного анализа твердых веществ с повышенной чувствительностью за счет использования двухимпульсного воздействия на пробу и использования метода регулирования межимпульсной задержки на основании данных о развитии плазмы в одноимпульсном режиме.

Поставленная цель достигается тем, что в способе определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии исследуемая проба подвергается действию последовательных лазерных импульсов, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрации эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум. Одним из отличительных признаков заявляемого изобретения является двухимпульсный способ воздействия на пробу с регулируемой межимпульсной задержкой за счет использования синхронизуемых электрооптических затворов. Между импульсами создается временная задержка с помощью двухканального генератора импульсов, который запускается от вспышки накачивающей лампы первого лазера, открывает затвор первого лазера для генерации импульса и с заданной межимпульсной задержкой открывает затвор второго лазера.

При воздействии первого импульса происходит оптический пробой и образуется лазерная плазма, воздействие второго импульса вызывает неравномерное увеличение интенсивности спектра лазерной плазмы, механизм которого остается неясным и его невозможно заранее предсказать [Кремерс Д., Радзиемски Л. Лазерно-искровая эмиссионная спектроскопия. Техносфера, М.: 2009, С.77]. Излучение лазерной плазмы после воздействия второго импульса регистрируют с помощью спектрографа и стробируемой электронно-оптической цифровой камеры, а затем по эмиссионным атомным и ионным линиям проводят количественное определение следовых компонентов пробы.

При данном способе проведения ЛИЭС анализа увеличивается интенсивность аналитических эмиссионных линий и уменьшается интенсивность непрерывного свечения лазерной плазмы. Это позволяет повысить чувствительность определения следовых компонентов в пробе. Также предложенный способ не требует продолжительных временных исследований развития лазерного факела для определения параметров межимпульсной задержки, что сокращает время проведения анализа. Заявляемый способ позволяет повысить чувствительность и экспрессность анализа при взаимодействии двух импульсов лазерного излучения на пробу, что является техническим результатом заявляемого решения.

Осуществление изобретения

Пример 1

Описанную форму выполнения предлагаемого способа использовали для количественного спектрального определения свинца, цинка и бериллия в почвах, что привело к увеличению интенсивности аналитических линий. Анализируемая проба помещалась на препаратный столик, излучение второй (532 нм) и третьей гармоник (355 нм) Nd:АИГ лазера с электрооптическим затвором направлялось соосно с помощью диэлектрического зеркала (пропускание 100% при 355 нм, 100% отражение при 532 нм) на фокусирующую линзу (F=150 мм) и фокусировалось на поверхности пробы. Излучение лазерно-индуцированной плазмы проецировалась с помощью двухлинзового конденсора на щель спектрографа и регистрировалось с помощью стробируемой электронно-оптической цифровой камеры. Межимпульсные задержки были выбраны равными времени наблюдения наибольшего соотношения сигнал/шум в одноимпульсном режиме воздействия на пробу. При выбранных межимпульсных задержках 3 мкс, 1 мкс и 0,75 мкс наблюдалось, соответственно, наибольшее увеличение интенсивности аналитических линий Pb I 405,78 нм в 10 раз, Zn I 213,83 нм в 10 раз и Be II 313,10 нм в 5 раз. При выборе меньших или больших значений межимпульсной задержки увеличение интенсивности линий указанных элементов была меньше.

Изобретение может быть использовано для экспрессного количественного определения следовых компонентов почв в полевых условиях.

Способ определения следовых компонентов методом лазерно-искровой эмиссионной спектроскопии воздействием последовательных лазерных импульсов на пробу, при этом после воздействия первого импульса возникает лазерно-индуцированная плазма, а второй импульс увеличивает интенсивность свечения эмиссионных линий следовых компонентов, и регистрацией эмиссионного спектра лазерной плазмы после воздействия второго импульса, отличающийся тем, что величину межимпульсной задержки выбирают равной времени, для которого при одноимпульсном воздействии на пробу достигается наибольшее соотношение сигнал/шум.
Источник поступления информации: Роспатент

Показаны записи 141-150 из 156.
19.01.2018
№218.016.0568

Способ определения бактериальной контаминации биоматериалов

Изобретение относится к области биотехнологии. Заявлен способ определения бактериальной контаминации культур клеток человека, а также лекарственных средств и биоматериалов на их основе при помощи ПЦР-амплификации последовательности ДНК гена бактериальной 16s РНК, универсальной для всех видов...
Тип: Изобретение
Номер охранного документа: 0002630673
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1c73

Способ оценки безопасности биомедицинских клеточных продуктов

Изобретение относится к области медицины и предназначено для оценки безопасности биомедицинского клеточного продукта (БМКП). Устанавливаются контрольные количественные величины, характеризующие уровень теломеразной активности в клетках с различным туморогенным потенциалом. Сопоставляются уровни...
Тип: Изобретение
Номер охранного документа: 0002640487
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.1eff

Устройство для преобразования возобновляемой энергии

Изобретение относится к устройствам для преобразования возобновляемой энергии. Устройство для преобразования возобновляемой энергии содержит раму, установленный на раме кривошипно-шатунный механизм, вал которого шарнирно связан шатуном и соединительным звеном с рамой; лопасть, жестко...
Тип: Изобретение
Номер охранного документа: 0002641176
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f7d

Высокотемпературная сверхпроводящая пленка на кристаллической кварцевой подложке и способ ее получения

Изобретение относится к криогенной технике и может быть использовано в технологии высокотемпературных сверхпроводящих (ВТСП) проводов нового поколения (с использованием гибких диэлектрических носителей) с применениями как в сильноточной сверхпроводниковой технике (например, сверхпроводящие...
Тип: Изобретение
Номер охранного документа: 0002641099
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.22c8

Способ получения углеводородных продуктов из керогенсодержащих пород

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей до фракций до...
Тип: Изобретение
Номер охранного документа: 0002641914
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.23e6

Способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом с

Изобретение относится к области молекулярной биологии и медицинской генетики. Предложен способ прогнозирования развития криоглобулинемического васкулита у больных хроническим гепатитом С (ХГС). Осуществляют получение образца геномной ДНК больного, выявление полиморфизмов в генах ITGB3 1565 Т/С...
Тип: Изобретение
Номер охранного документа: 0002642626
Дата охранного документа: 25.01.2018
13.02.2018
№218.016.259e

Стабилизатор липосомальных суспензий

Изобретение относится к конъюгату хитозана для стабилизации липосомальных суспензий и способу его получения, которые могут быть использованы в фармацевтической промышленности. Предложенный конъюгат представляет собой соединение формулы (COHNH)(COHNHX), где в качестве заместителя по аминогруппе...
Тип: Изобретение
Номер охранного документа: 0002642786
Дата охранного документа: 26.01.2018
13.02.2018
№218.016.272c

Моноклональное антитело, связывающееся с гликопротеином вируса эбола, фрагменты днк, кодирующие указанное антитело, и антигенсвязывающий фрагмент

Изобретение относится к области биотехнологии и биохимии, а именно моноклональному антителу, селективно связывающему гликопротеин вируса Эбола с константой диссоциации комплекса 0,8×10 М, а также изолированному фрагменту ДНК, кодирующему участки легкой и тяжелой цепи указанного антитела, и...
Тип: Изобретение
Номер охранного документа: 0002644334
Дата охранного документа: 08.02.2018
17.02.2018
№218.016.2ae8

Способ коррекции митохондриальной дисфункции с помощью генетической конструкции

Предложенная группа изобретений относится к области биотехнологии и молекулярной биологии. Предложены набор олигонуклеотидов для синтеза генетической конструкции, предназначенной для коррекции митохондриальной дисфункции, вызванной «основной делецией», генетическая конструкция и способ доставки...
Тип: Изобретение
Номер охранного документа: 0002642972
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2d50

Способ формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала необходимой длины

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в плазме и в газоразрядных приборах. Технический результат - обеспечение возможности формирования тепловой кумулятивной струи, плавящей металл, и образованного ею канала на поверхности...
Тип: Изобретение
Номер охранного документа: 0002643530
Дата охранного документа: 02.02.2018
+ добавить свой РИД