×
10.05.2015
216.013.47e0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ

Вид РИД

Изобретение

Аннотация: Способ относится к исследованиям деформации материала в процессе механической обработки резанием. Деформируемую в процессе резания поверхность образца освещают когерентным монохроматическим излучением. Процесс деформации регистрируют цифровой монохроматической камерой. Формируют опорные точки на изображении. Проводят сравнение двух последовательных кадров видеозаписи. В результате получают характеристики перемещения точек деформируемого материала в зоне стружкообразования. По измеренным перемещениям определяют характеристики деформации. Технический результат - возможность определения деформации материала образца при перемещении в реальном времени. 8 ил.
Основные результаты: Способ определения деформации материала в зоне стружкообразования при резании с неподвижным положением резца и перемещающимся образцом, отличающийся тем, что боковую поверхность резца и исследуемого образца в процессе резания освещают источником когерентного монохроматического излучения, регистрируют перемещение деформируемого материала образца с помощью монохроматической цифровой видеокамеры и затем при сравнении изображений двух последовательных кадров по измеренным перемещениям опорных точек в выбранной координатной сетке определяют характеристики деформации материала образца в зоне стружкообразования.

Изобретение относится к способам исследования деформации материала в процессе механической обработки резанием.

Известен способ определения деформации материала с применением делительных сеток (см. Гольдшмидт М.Г. Деформации и напряжения при резании металлов. Томск: изд. STT, 2001. 180 с.; также см. Полетика М.Ф. Теория резания. Часть I. Механика процесса резания. Томск: изд. ТПУ, 2001. 202 с.), которые наносят на поверхность образца царапанием, нанесением покрытий, вдавливанием индентора. Образцы для исследований набирают из двух пластин, а нанесенная сетка располагается в среднем сечении. Информацию о распределении деформаций в зоне резания получают из анализа деформированной сетки после получения корня стружки.

Способ ограничен в применении вследствие анизотропии исследуемых материалов, от которой зависит размер базовой сетки и точность измеряемых величин. Для некоторых материалов невозможно применение данного метода из-за характера структуры и размера зерен (например, сталь 40, Х17Н132М2Т). Трудоемким является процесс измерения произошедшей деформации по деформированной сетке из-за значительной неоднородности пластической деформации в зоне резания. Этим способом невозможно оценить изменение деформации в процессе обработки.

Известен способ исследования деформации режущего инструмента в процессе резания (пат. РФ №2436039, G01B 11/16, опубл. 10.12.2011), в котором предварительно на заготовке делают с необходимым шагом поперечные пазы, а боковую поверхность материала режущей, части инструмента полируют. Затем освещают боковую полированную поверхность инструмента пучком когерентного монохроматического излучения, формируют интерференционную картину, непрерывно регистрируют изменения интерференционных картин. Далее осуществляют процесс резания на интересующих режимах, а составляющую деформации от силовых нагрузок определяют путем пересчета разности порядков интерференционных полос, прошедших через расчетные сечения на интерференционных картинах, полученных в процессе резания непосредственно перед поперечным пазом и в момент нахождения режущей части инструмента в пазу.

Способ рассматривает в качестве объекта исследования инструмент, который находится в зафиксированном положении, а не материал заготовки.

Известен способ исследования деформации материала (пат. РФ 2023252, G01N 3/00, G01B 11/16, опубл. 15.11.1994). Испытуемый образец с полированной гранью деформируют в приспособлении для нагружения, которое выполнено в виде пресса с подвижной и неподвижной плитами. На поверхности подвижной плиты, обращенной к неподвижной плите, устанавливают зеркало. Освещают зеркало и полированную грань образца пучком излучения лазера. Формируют интерференционные картины посредством двуплечевых интерферометров, в рабочих плечах которых располагают соответственно зеркало и зеркально-полированную грань образца. Регистрируют деформации и определяют модули упругости и коэффициента Пуассона путем счета чисел интерференционных линий. При этом в качестве зеркала используют полированную поверхность подвижной плиты.

Способ использует оптическую схему, которая требует точной настройки расположения зеркал для обеспечения работы двуплечих интерферометров, в рабочих плечах которых располагают соответственно зеркало на подвижной плите пресса и зеркальную поверхность образца. Данный способ предназначен для исследования только одностороннего сжатия.

Известен способ определения деформаций диффузно отражающих объектов (пат. РФ 2289098, G01B 15/06, G03H 1/22, опубл. 10.12.2006). Способ заключается в изготовлении двухэкспозиционной голограммы объекта по внеосевой схеме, восстановлении с голограммы интерферирующих волновых полей неразведенным когерентным излучением со стороны исследуемого объекта. Регистрация интерференционной картины производится в направлении исходного опорного пучка.

Данный способ технически сложнее, поскольку необходимо изображение, полученное на голограмме, дополнительно восстанавливать.

Известен способ исследования деформации режущего инструмента в процессе эксплуатации (пат. РФ 2086914, G01B 11/16, опубл. 10.08.1997). Боковую грань инструмента освещают лазером и по интерференционной кинограмме контролируют деформацию. Указанную грань покрывают серебром для повышения отражающих свойств.

Способ рассматривает в качестве объекта исследования инструмент, который находится в зафиксированном положении, а не материал заготовки.

Задачей настоящего изобретения является определение степени деформации материала образца в зоне стружкообразования в процессе резания.

Поставленная задача достигается тем, что при неподвижном положении резца и перемещающемся образце боковую поверхность резца и исследуемого образца в процессе резания освещают источником когерентного монохроматического излучения. После чего перемещение деформируемого материала образца регистрируют с помощью монохроматической цифровой видеокамеры. Из полученной видеозаписи выбирают два последовательных кадра и сравнивают их изображения. Затем по измеренным перемещениям опорных точек в выбранной координатной сетке определяют характеристики деформации материала образца в зоне стружкообразования.

Отличительным признаком является то, что объектом исследования является зона стружкообразования, которая формируется в процессе механической обработки резанием.

Техническим результатом является возможность определения векторов перемещений материала в зоне стружкообразования с выбранным шагом координатной сетки в реальном времени.

Описанный технический результат достигается применением метода корреляции цифровых изображений, полученных при подсветке боковой поверхности исследуемого образца когерентным монохроматическим излучением с помощью цифровой видеокамеры, в процессе механической обработки резанием.

На фиг.1 показана схема способа определения деформации материала в зоне стружкообразования при резании.

На фиг.2 показана схема формирования векторного поля деформации в исследуемой области.

На фиг.3 отображено векторное поле деформации в зоне стружкообразования.

На фиг.4 показаны области равного перемещения деформируемого материла в зоне стружкообразования.

На фиг.5 показаны линии равного поворота вектора перемещения деформируемого материла в зоне стружкообразования.

На фиг.6 отображены относительные деформации εхх материла образца в зоне стружкообразования.

На фиг.7 отображены относительные деформации εхх материла образца в зоне стружкообразования.

На фиг.8 отображены относительные сдвиги γху материла образца в зоне стружкообразования.

На фиг.1 показана схема способа определения деформации материала в зоне стружкообразования при резании. Исследуемый образец 1, в виде диска, закрепляется на оправке. Резец 2 устанавливают на необходимую глубину резания. Настройку оптической системы производят таким образом, чтобы боковая поверхность исследуемого образца находилась в предметной плоскости видеокамеры. Осуществляют перемещение образца со скоростью резания V=13 мм/мин. Зону стружкообразования освещают когерентным монохроматическим излучением лазерного модуля с коллиматором 3. Изображение непрерывно регистрируют цифровой монохроматической видеокамерой 4 с частотой 25 кадров в секунду и передают на персональный компьютер 5 (см. фиг.1). Это позволяет сформировать на цифровых изображениях опорные точки с определенным размером, зависящим от матрицы цифровой видеокамеры, и разной контрастностью.

Из полученной видеозаписи выбирают два последовательных кадра. На выбранных кадрах формируют координатную сетку с заданным шагом.

На фиг.2 показана схема формирования векторного поля деформации в исследуемой области. Вектор перемещения элементарной ячейки определяется фиксированием картины контрастных точек в выбранной ячейке текущего кадра, поиском аналогичной картины контрастных точек в соседних ячейках на последующем кадре и определением величин изменения координат.

На фиг.3 отображено векторное поле деформации в зоне стружкообразования, которое дает наглядное представление о величине и направлении перемещения деформируемого материала образца.

Свободное точение дисков из меди M1 диаметром 160 мм осуществлялось на специально сконструированной экспериментальной установке, со скоростью резания V=13 мм/мин отрезным резцом - Т5К10 с плоской передней поверхностью и передним углом γ=0°. После установления процесса врезания с целью обработки результатов берут два последовательных кадра, которые соответствуют временному интервалу в 0,04 с. По итогам анализа взятых изображений сформированы две матрицы перемещений точек с шагом сетки 0,12 мм по вертикальной V и горизонтальной координате U.

Величина суммарного перемещения определена путем сложения векторов:

где - вектор перемещения по вертикальной координате, мкм;

- вектор перемещения по горизонтальной координате, мкм.

Угловую характеристику W, определяющую направление суммарного вектора, рассчитывают по формуле:

где U и V - проекции вектора перемещения на координатные оси.

Одинаковые значения векторов в пределах ± 0,5 мкм на графическом отображении соединяют плавными линиями и формируют области равного перемещения (см. фиг.4). Значения углов, определяющих направление суммарного вектора с погрешностью ± 30', также соединяют плавными линиями равного поворота (см. фиг.5) вектора перемещения.

С использованием компонент векторов перемещений по координатам определяют относительные деформации εхх по формуле εxx=dU / dx (см. фиг.6), εуу по формуле εуу=dV/dy (см. фиг.7) и относительные сдвиги γху по формуле (см. фиг.8),

где U и V - проекции вектора перемещения на координатные оси.

х и у - размеры базы координатной сетки.

Полученные данные позволяют наглядно представить результаты экспериментов, отслеживать развитие деформации во времени и определить границы области деформации в зоне резания. Они являются исходным материалом для совершенствования технологических процессов изготовления деталей машин с достижением заданной точности и высокой производительности механической обработки за счет конструирования прогрессивных конструкций металлорежущих инструментов и назначения оптимальных режимов резания.

Способ определения деформации материала в зоне стружкообразования при резании с неподвижным положением резца и перемещающимся образцом, отличающийся тем, что боковую поверхность резца и исследуемого образца в процессе резания освещают источником когерентного монохроматического излучения, регистрируют перемещение деформируемого материала образца с помощью монохроматической цифровой видеокамеры и затем при сравнении изображений двух последовательных кадров по измеренным перемещениям опорных точек в выбранной координатной сетке определяют характеристики деформации материала образца в зоне стружкообразования.
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА В ЗОНЕ СТРУЖКООБРАЗОВАНИЯ ПРИ РЕЗАНИИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 144.
10.02.2015
№216.013.2617

Устройство для дорнования глубоких отверстий

Изобретение относится к металлообработке. Устройство состоит из корпуса с отверстием для размещения дорна и толкателя его привода. На корпусе закреплено направляющее устройство для толкателя, в корпусе которого выполнены центральное сквозное ромбическое отверстие для направления толкателя и...
Тип: Изобретение
Номер охранного документа: 0002541204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2675

Устройство для создания зарядов на поверхности тел и способ его применения

Изобретение относится к области измерительной и учебной техники и может быть использовано для изучения явлений электромагнетизма. По периметру диэлектрического диска впрессованы металлические шарики, диаметр которых равен толщине диска. Диск расположен на изолированном основании. Металлический...
Тип: Изобретение
Номер охранного документа: 0002541298
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c7

Сверхпроводящий выключатель

Сверхпроводящий выключатель может быть использован для коммутации электрических цепей постоянного тока, в системах вывода энергии из индуктивных сверхпроводящих накопителей, для защиты крупных магнитных сверхпроводящих систем, работающих в режиме «замороженного» магнитного поля, сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002541380
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26cf

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области машиностроения и касается прогнозирования и контроля износостойкости твердосплавных группы применяемости К режущих инструментов по содержанию водорода в поверхностной и приповерхностной структуре. Отличительная особенность способа прогнозирования износостойкости...
Тип: Изобретение
Номер охранного документа: 0002541388
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.284a

Способ создания модели перекисного окисления лимфоцитов

Изобретение относится к медицине и может быть использовано для оценки эффективности модели перекисного окисления липидов мембран лимфоцитов. Для этого предварительно обрабатывают лимфоциты перекисью водорода в конечной концентрации 0,5 мМ и определяют белково-связанный глутатион. При увеличении...
Тип: Изобретение
Номер охранного документа: 0002541771
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b9c

Парогазовая установка

Изобретение относится к области теплоэнергетики. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой...
Тип: Изобретение
Номер охранного документа: 0002542621
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2dc5

Способ очистки сточных вод от фенолов и нефтепродуктов

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание...
Тип: Изобретение
Номер охранного документа: 0002543185
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e01

Секция механизированной крепи

Изобретение относится к горной промышленности, в частности к секции горной крепи, предназначенной для механизации очистных работ при разработке пластов угля, калийной соли и рудных залежей. Техническим результатом является трансформация энергии обрушающихся пород в электроэнергию, что позволяет...
Тип: Изобретение
Номер охранного документа: 0002543245
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f9a

Способ получения меченного технецием-99m наноколлоида

Изобретение относится к способу получения меченного технецием-99m наноколлоида для радионуклидной диагностики. Заявленный способ включает приготовление исходной суспензии наноколлоида в 0,1% растворе додецилбензол сульфата натрия и пропускание ее через фильтр с диаметром пор 100 нм, введение в...
Тип: Изобретение
Номер охранного документа: 0002543654
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fba

Микромеханический акселерометр

Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью...
Тип: Изобретение
Номер охранного документа: 0002543686
Дата охранного документа: 10.03.2015
Показаны записи 71-80 из 238.
10.12.2013
№216.012.8987

Способ электроразрядного разрушения твердых материалов

Изобретение относится к горнодобывающей и строительной отраслям промышленности. Способ электроразрядного разрушения твердых материалов включает формирование шпура в твердом материале, размещение в нем картриджа с веществом, предающим ударную волну, и взрываемым проводником, и инициирование...
Тип: Изобретение
Номер охранного документа: 0002500889
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89fc

Способ идентификации водородного охрупчивания легких сплавов на основе титана

Использование: для идентификации водородного охрупчивания легких сплавов на основе титана. Сущность заключается в том, что измеряют зависимость скорости распространения ультразвуковой волны в легких сплавах от содержания в них водорода. Способ отличается тем, что на поверхности металла...
Тип: Изобретение
Номер охранного документа: 0002501006
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a77

Резонансный свч-компрессор

Изобретение относится к области радиотехники и может быть использовано для формирования мощных СВЧ-импульсов наносекундной длительности. Технический результат - увеличение мощности выходных сигналов компрессора за счет увеличения объема накопительного резонатора и количества каналов вывода...
Тип: Изобретение
Номер охранного документа: 0002501129
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e2c

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике. В течение пуска и торможения выбегом электродвигателя одновременно проводят измерение мгновенных величин токов и напряжений на двух фазах статора и частоты вращения вала электродвигателя, определяют модуль вектора тока статора, преобразуют напряжения из...
Тип: Изобретение
Номер охранного документа: 0002502079
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.8fff

Способ приготовления модельного коллоидного раствора

Изобретение может быть использовано в установках водоподготовки при оценке эффективности их работы и выборе оптимальной последовательности технологического процесса водоочистки. Способ приготовления модельного коллоидного раствора включает внесение в дисперсионную среду при перемешивании...
Тип: Изобретение
Номер охранного документа: 0002502556
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.9556

Интегральный микромеханический гироскоп

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости. Гироскоп содержит две инерционные массы, выполненные в виде пластин с гребенчатыми структурами, на которых расположены пластины...
Тип: Изобретение
Номер охранного документа: 0002503924
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.97ed

Способ получения вольфрамата натрия

Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л. Процесс выщелачивания ведут не менее 6 часов при температуре 200-225°С с постоянным перемешиванием. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002504592
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9896

Способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим...
Тип: Изобретение
Номер охранного документа: 0002504761
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98b5

Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Изобретение относится к области электротехники и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи. Сущность: измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов...
Тип: Изобретение
Номер охранного документа: 0002504792
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
+ добавить свой РИД