×
10.04.2015
216.013.40b0

Результат интеллектуальной деятельности: СЦИНТИЛЛЯЦИОННЫЙ СЧЕТЧИК ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 10 имп./мин и может быть использовано для точной регистрации интенсивных потоков гамма излучения. Сцинтилляционный счетчик ионизирующего излучения содержит сцинтиллятор на основе ортогерманата висмута BiGeO (BGO), который через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с микроконтроллером и делителем частоты, который подключен к микроконтроллеру, который подключен к персональному компьютеру. Технический результат - создание миниатюрного устройства, способное подсчитывать гамма кванты высокой интенсивности. 2 ил.
Основные результаты: Сцинтилляционный счетчик ионизирующего излучения, содержащий сцинтиллятор на основе ортогерманата висмута BiGeO (BGO) и фотоэлектронный умножитель, отличающийся тем, что сцинтиллятор через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с микроконтроллером и делителем частоты, который подключен к микроконтроллеру, который связан с персональным компьютером.

Изобретение относится к области измерения ядерных излучений, а именно к подсчету количества гамма квантов от различных источников излучения в диапазоне энергий от сотен кэВ до единиц МэВ с загрузкой до 109 имп./мин, и может быть использовано для точной регистрации интенсивных потоков гамма излучения.

Известен сцинтилляционный портативный счетчик [Каталог «Аппаратура радиационного контроля», НЛП «Доза», «Прогресс-Г(П)» на сайте компании http://www.doza.ru/docs/radiation_control/Progress_G_P.pdf], содержащий блок детектирования, который состоит из сцинтиллятора, соединенного с вакуумным фотоэлектронным умножителем и источником питания до 3кВ. В блоке детектирования используется детектор на основе сцинтиллятора NaI(Tl). Пульт управления состоит из аккумуляторного блока питания, линейного усилителя, амплитудно-цифрового преобразователя, микроконтроллера и запоминающего устройства. Блок детектирования связан с линейным усилителем и амплитудно-цифровым преобразователем. Диапазоны энергий регистрируемого фотонного излучения от 2·102 до 3·103 кэВ. Диапазоны измерения активности гамма излучения от 8 до 106 Бк. Габаритные размеры составных частей: длина блока детектирования 230 мм, и 180 мм пульта управления.

Основными недостатками этого счетчика являются: большие габариты; высоковольтный источник питания до нескольких 1000 В; сильная чувствительность к электромагнитным полям.

Известен полупроводниковый счетчик [«Спектрометр энергии гамма-излучения полупроводниковый ГАММА-1П» продукция компании «ЗАО НПЦ Аспект» http://aspect.dubna.ru/], основным элементом которого является полупроводниковый диод на основе германия. Полупроводниковый диод с усилителем в корпусе закреплен на штанге и в рабочем положении установлен в сосуд Дьюара. Блок управления мини крейт NIM состоит из высоковольтного блока питания, низковольтного блока питания, усилителя, соединенного с амплитудно-цифровым преобразователем, который соединен с устройством передачи информации в компьютер. Полупроводниковый диод соединен с высоковольтным и низковольтным источником питания, сигнальный выход диода подключен к усилителю мини крейта NIM.

Полупроводниковый счетчик обладает высокой надежностью, может работать в магнитных полях, но для работы требует наличие криогенного охлаждения, высоковольтный источник питания до 1000 В и в рабочем положении имеет большие размеры и массу до 600 кг.

Известен полупроводниковый детектор [«Спектрометр рентгеновского и гамма излучения X-123CdTe» каталог продукции компании «Amptek» http://www.amptek.com/].

В качестве детектора излучения использован кадмиево-теллуридный (CdTe) детектор.

Детектор смонтирован на термоэлектрическом охлаждающем модуле вместе с входным полевым транзистором и соединен с зарядочувствительным предусилителем. Блок управления миникрейт NIM состоит из низковольтного блока питания, усилителя, соединенного с амплитудно-цифровым преобразователем, который соединен с устройством передачи информации в компьютер. Кадмиево-теллуридный детектор соединен с низковольтным источником питания, сигнальный выход диода подключен к усилителю мини крейта NIM. Максимальная скорость счета 1·105имп/c. Габариты устройства 7×10×2,5 см, вес до 180 г.

Малая толщина рабочей области (порядка сотни микрометров) не позволяет использовать этот полупроводниковый детектор для измерения высокоэнергетических частиц более 150кэВ.

Известен сцинтилляционный детектор для регистрации ионизирующего излучения (RU 2088952 C1, МПК6 G01T1/20, G01T3/06, опубл. 27.08.1997), выбранный в качестве прототипа, который содержит датчик-сцинтиблок и блок электронной обработки сигналов. Датчик-сцинтиблок состоит из последовательно соединенных сцинтилляционного кристалла ортогерманата висмута Bi4Ge3O12, чувствительного к протонному, рентгеновскому, а также гамма-излучениям, и световода, выполненного из органического сцинтиллирующего вещества на основе стильбена или пластмассы (СН)n, чувствительного к быстрым нейтронам и фотоэлектронного умножителя. Блок электронной обработки сигналов включает схему временной селекции сцинтиимпульсов, поступающих в него как от сцинтиллятора Bi4Ge3O12 (длительностью 300 нc), так и от сцинтиллирующего под действием быстрых нейтронов световода (с длительностью сцинтилляций 5-7 нc).

Однако данный детектор содержит вакуумный фотоэлектронный усилитель, требующий высоковольтный источник питания до нескольких тысяч вольт.

Этот сцинтилляционный детектор имеет значительные размеры (длина 250 мм, диаметр 40 мм) и чувствителен к электромагнитным полям.

Задачей изобретения является разработка миниатюрного устройства, способного подсчитывать гамма кванты высокой интенсивности.

Поставленная задача решена за счет того, что сцинтилляционный счетчик ионизирующего излучения, также как в прототипе содержит сцинтиллятор на основе ортогерманата висмута Bi4Ge3O12 (BGO) и фотоэлектронный умножитель.

Согласно изобретению сцинтиллятор через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с делителем частоты и микроконтроллером, который подключен к персональному компьютеру. Делитель частоты подключен к микроконтроллеру.

Излучение гамма квантов с энергией от сотни кэВ до нескольких МэВ и интенсивностью до 109 имп/мин регистрируется сцинтиллятором на основе ортогерманата висмута Bi4Ge3O12 (BGO), время высвечивания световой вспышки которого при комнатной температуре составляет 300 нс.

В заявленном сцинтилляционном счетчике ионизирующего излучения использован кремниевый фотоэлектронный умножитель, характеризующийся высоким коэффициентом усиления k=106 и квантовой эффективностью от 15 до 23%, имеет компактные размеры 6×6 мм2, нечувствителен к воздействию магнитных полей, работает от низкого напряжения - 30 В, обладает механической прочностью и невосприимчивостью к внешней засветке.

Использование в конструкции счетчика делителя частоты обеспечивает скорость счета до 109 имп/с с погрешностью не более 2%.

По сравнению с прототипом предложенное устройство обладает миниатюрными размерами: не более 5 см3.

На фиг. 1 представлена блок схема сцинтилляционного счетчика ионизирующего излучения.

На фиг. 2 представлена принципиальная схема источника питания.

Сцинтилляционный счетчик ионизирующего излучения содержит сцинтиллятор 1 (С), к которому при помощи силиконового герметика 2 (СГ) приклеен кремниевый фотоэлектронный умножитель 3 (ФЭУ), который связан с источником питания 4 (ИП), к которому подключен усилитель дискриминатор 5 (УД). Усилитель дискриминатор 5 (УД) соединен с микроконтроллером 6 (МК) и делителем частоты 7 (ДЧ), который связан с микроконтроллером 6 (МК), который соединен с персональным компьютером 8 (ПК).

В предлагаемом устройстве использован сцинтиллятор 1 (С) на основе ортогерманата висмута Bi4Ge3O12 (BGO) с радиационной длиной, равной 1,13 см, и размером 1 см3.

В качестве кремниевого фотоэлектронного умножителя 3 можно использовать детектор, поставляемый компанией SENSL [Ирландия http://www.sensl.com/downloads/ds/DS-MicroFM.pdf], который позволяет получать сигнал с временем нарастания фронта импульса около 100 пс и временем восстановления менее 1 нс.

Источник питания 4 (ИП) содержит генератор 9 (Г), выход которого через ограничительный резистор 10 подключен к базе транзистора 11, к коллектору которого подключен дроссель 12 и анод диода 13. Катод диода 13 соединен с конденсатором 14, сопротивлением делителя 15 и ограничивающим ток сопротивлением 16. Сопротивление 16 подключено к кремниевому фотоэлектронному умножителю 3 (ФЭУ) и через емкость 17 к усилителю дискриминатору 5 (УД). К сопротивлению 15 подключено сопротивление 18 и инверсный вход компаратора 19. К не инверсному входу компаратора 19 подключен делитель 20. Компаратор 19 связан с генератором 9 (Г). Дроссель 12, компаратор 19, одно плечо делителя 20 соединены со стабилизированным источником питания +5 В. Эмиттер транзистора 11, конденсатор 14, сопротивление 18 и второе плечо делителя 20 заземлены.

В качестве усилителя дискриминатора 5 (УД) использована классическая схема транзисторного усилителя.

В качестве микроконтроллера 6 (МК) можно использовать контроллеры компании Atmel [http://www.atmel.com/ru/ru/products/microcontrollers/avr/default.aspx].

В качестве делителя частоты 7 (ДЧ) можно использовать декадный счетчик, собранный на микросхемах HEF4016BT1 компании PHILIPS [http://pdf.datasheetcatalog.com/datasheet/philips/HEF4016BN.pdf].

В качестве генератора 9 (Г) может быть использована аналоговая интегральная микросхема NE555 компании Texas Instrument [http://www.ti.com/lit/ds/symlink/ne555.pdf].

Устройство работает следующим образом.

Сцинтилляционный счетчик ионизирующего излучения размещают рядом с интенсивным источником гамма квантов или рентгеновского излучения. Сцинтиллятор 1 (С) преобразует гамма кванты в вспышки света длительностью менее 300 нс. Вспышки света через силиконовый герметик 2 (СГ) поступают на кремниевый фотоэлектронный умножитель 3 (ФЭУ), который преобразует их в импульсы напряжения. Кремниевый фотоэлектронный умножитель 3 (ФЭУ) получает питание от источника питания 4 (ИП). Прямоугольные импульсы от генератора 9 (Г) через ограничивающий резистор 10 подаются на базу транзистора 11, нагрузкой которого является дроссель 12. При резком запирании этого транзистора в дросселе 12 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на выпрямитель, построенный на диоде 13 и конденсаторе 14. Выходное напряжение регулируют при помощи компаратора 19. Через сопротивление делителя напряжения 15 и сопротивление 18 выходное напряжение поступает на инвертирующий вход компаратора 19 и сравнивается с опорным, поступающим на не инверсный вход. Меняя делителем 20 опорное напряжение, можно регулировать выход компаратора 19, связанный со сбросовым входом генератора 9 (Г). При превышении выходного выпрямленного напряжения порогового значения, установленного делителем 20, происходит подача низкого уровня на вход генератора 9 (Г) и генерация прекращается. Выпрямленное напряжение снижается, компаратор 19 переходит в состояние логической единицы и разрешает генерацию. Импульсы от кремниевого фотоэлектронного умножителя 3 (ФЭУ) длительностью 10-20 нс через емкость 17 поступают на усилитель дискриминатор 5 (УД). Импульсы большой амплитуды соответствуют детектируемым фотонам (квантам) света. Малые импульсы, которые возникают из-за шумов в самом кристалле кремниевого фотоэлектронного умножителя 3 (ФЭУ), отсекаются усилителем дискриминатором 5 (УД). С выхода усилителя дискриминатора 5 (УД) снимаются TTL импульсы длительностью 20-30 нс и подсчитываются в микроконтроллере 6 (МК). При превышении порога 500 тыс.имп/с, TTL импульсы проходят через делитель частоты 7 (ДЧ), делятся на 100 и поступают на микроконтроллер 6 (МК). Подсчитанное количество импульсов передается на персональный компьютер 8 (ПК).

Предложенное устройство обладает миниатюрными размерами (не более 5 см3) и способно подсчитывать гамма кванты с энергией от сотен кэВ до единиц МэВ с загрузкой до 109 имп/мин.

Сцинтилляционный счетчик ионизирующего излучения, содержащий сцинтиллятор на основе ортогерманата висмута BiGeO (BGO) и фотоэлектронный умножитель, отличающийся тем, что сцинтиллятор через оптический герметик связан с кремниевым фотоэлектронным умножителем, который связан с источником питания, подключенным к усилителю дискриминатору, который соединен с микроконтроллером и делителем частоты, который подключен к микроконтроллеру, который связан с персональным компьютером.
СЦИНТИЛЛЯЦИОННЫЙ СЧЕТЧИК ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ
СЦИНТИЛЛЯЦИОННЫЙ СЧЕТЧИК ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 142.
20.07.2014
№216.012.ddf0

Способ умягчения воды

Изобретение относится к водоподготовке и может быть использовано как в домашних, так и в производственных условиях для умягчения воды, содержащей большое количество солей жесткости, а также для осветления и очистки оборотных и сточных вод сельского хозяйства, пищевой и химической...
Тип: Изобретение
Номер охранного документа: 0002522602
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de12

Свч плазменный конвертор

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода. СВЧ плазменный конвертор содержит проточный реактор 1 из радиопрозрачного термостойкого материала, заполненный...
Тип: Изобретение
Номер охранного документа: 0002522636
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df77

Линейный индукционный ускоритель с двумя разнополярными импульсами

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему (1) в виде набора ферромагнитных сердечников,...
Тип: Изобретение
Номер охранного документа: 0002522993
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14e

Способ изготовления полимерной ионообменной мембраны радиационно-химическим методом

Изобретение относится к способу изготовления полимерной ионообменной мембраны, которую применяют для разделения вещества с помощью электрохимических процессов, таких как электродиализ, электролиз, для получения электричества в гальванических батареях, в частности, для топливного элемента....
Тип: Изобретение
Номер охранного документа: 0002523464
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e1

Способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором

РЕФЕРАТ (57) Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. Способ включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, при этом детектор...
Тип: Изобретение
Номер охранного документа: 0002523611
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e39f

Способ получения композиционного керамического материала

Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/AlO, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов. Изобретение направлено...
Тип: Изобретение
Номер охранного документа: 0002524061
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e720

Способ получения фенилэтинил производных ароматических соединений

Изобретение относится к способу получения фенилэтинил производных ароматических соединений. Способ характеризуется тем, что включает нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение...
Тип: Изобретение
Номер охранного документа: 0002524961
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e86d

Устройство управления и обеспечения живучести двигателя двойного питания

Изобретение относится к области электротехники и может быть использовано в регулируемом трехфазном электроприводе, выполненном на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания. Технический результат: обеспечение живучести...
Тип: Изобретение
Номер охранного документа: 0002525294
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e994

Способ измерения угловой скорости вращения трехфазного асинхронного электродвигателя

Изобретение относится к измерительной технике и может быть использовано в электроприводах для измерения угловой скорости вращения в установившихся и переходных режимах. Способ заключается в измерении мгновенных значений фазных токов i, i и напряжений u, u на фазах А и В, подводимых к статору,...
Тип: Изобретение
Номер охранного документа: 0002525604
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ea88

Система зажигания

Изобретение относится к области транспорта и может быть использовано для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002525848
Дата охранного документа: 20.08.2014
Показаны записи 31-40 из 235.
27.07.2013
№216.012.5990

Способ получения порошка нитрида титана

Изобретение относится к технологии получения нитридов, в частности нитрида титана, который представляет собой твердый, тугоплавкий и химически инертный материал, который применяют в качестве покрытий для режущих и обрабатывающих инструментов, для шлифовки, при изготовлении жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002488549
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5c37

Способ получения гранулированной алюминиевой пудры

Изобретение относится к порошковой металлургии, в частности к получению алюминиевой гранулированной пудры. Может использоваться в строительстве, химии, водородной энергетике, топливах. Алюминиевую пудру смешивают с органической добавкой в мешалке миксерного или роторного типа при скорости...
Тип: Изобретение
Номер охранного документа: 0002489228
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.60f5

Устройство для подрезания блоков горных пород высоковольтными разрядами

Изобретение относится к горнодобывающей и строительной отрасли промышленности. Устройство для подрезания блоков горных пород высоковольтными разрядами имеет трубчатый канал для подачи промывочной жидкости в зазор между высоковольтным и заземленным электродами, выполненными в виде параллельных...
Тип: Изобретение
Номер охранного документа: 0002490453
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61a0

Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье на графитовом электроде, модифицированном золотом

Изобретение направлено на определение ионов осмия (VIII) инверсионно-вольтамперометрическим (ИВ) методом в природном и техногенном сырье и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ...
Тип: Изобретение
Номер охранного документа: 0002490624
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61a1

Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в водных растворах природного и техногенного происхождения

Изобретение относится к аналитической химии и может быть использовано в гидрогеологии, изысканиях в случае анализа вод различного происхождения. Способ определения рения кинетическим инверсионно-вольтамперометрическим методом в водных растворах природного и техногенного происхождения...
Тип: Изобретение
Номер охранного документа: 0002490625
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.652e

Способ определения платины в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления ptpb

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения платины в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002491539
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6545

Способ контроля изоляции кабельного изделия

Изобретение относится к дефектоскопии изоляции кабельных изделий электроискровым методом неразрушающего контроля. К участку поверхности изоляции движущегося кабельного изделия при заземленных электропроводящих элементах посредством электрода непрерывно прикладывают высокое (до 40 кВ)...
Тип: Изобретение
Номер охранного документа: 0002491562
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.6548

Способ определения стойкости изоляции эмалированных проводов к поверхностным разрядам

Изобретение относится к кабельной технике и может быть использовано в электромашиностроении, в производстве трансформаторов, в сфере производства и применения обмоточных проводов. Технический результат: улучшение контакта образца провода со средой за счет создания условий испытаний, подобным...
Тип: Изобретение
Номер охранного документа: 0002491565
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6784

Способ очистки подземных вод от устойчивых форм железа

Изобретение относится к области водоснабжения и может быть использовано в системах водоподготовки для улучшения качества питьевой воды. Способ очистки подземных вод от устойчивых форм железа включает регулирование pH очищаемой воды с последующей фильтрацией и восстановлением pH до нормативных...
Тип: Изобретение
Номер охранного документа: 0002492147
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6bf7

Способ изготовления контактов вакуумных дугогасительных камер

Изобретение относится к области электротехники, а именно к технологии изготовления контактов вакуумных дугогасительных камер. Порошковую смесь и заготовку из материала с высокой электропроводностью помещают в вакуумную камеру, где порошковую смесь наносят в виде покрытия на заготовку методом...
Тип: Изобретение
Номер охранного документа: 0002493290
Дата охранного документа: 20.09.2013
+ добавить свой РИД