×
10.04.2015
216.013.3928

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОКИСЛЕНИЯ ВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий. Предложенный способ включает обработку, подготовку и пропитку носителя с промежуточным покрытием солевым раствором активной фазы. При этом носитель готовят из ретикулированного пенополиуретана путем пропитки керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), подсушивают при температуре 100…120°С, обжигают при температуре 1470…1510°С. Затем полученную керамическую высокопористую блочно-ячеистую матрицу последовательно пропитывают раствором алюмозоля в количестве до 10,0 мас.% от массы носителя, подсушивают при температуре 100…120°С и прокаливают в воздушной среде при температуре 550…600°С, охлаждают, обрабатывают раствором хлористого палладия с содержанием палладия 1,5…4,0 г/л, сушат при температуре не более 120°С, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают в токе молекулярного водорода до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 1,0 мас.% при температуре 60…85°С. Предлагаемый способ позволяет получать катализаторы, обладающие высокой активностью в процессе окисления водорода, а также снизить температуру их эксплуатации. 4 пр.
Основные результаты: Способ приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий, включающий обработку, подготовку и пропитку носителя с промежуточным покрытием солевым раствором активной фазы, отличающийся тем, что носитель готовят из ретикулированного пенополиуретана путем пропитки керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), подсушивают при температуре 100…120°С, обжигают при температуре 1470…1510°С, затем полученную керамическую высокопористую блочно-ячеистую матрицу последовательно пропитывают раствором алюмозоля в количестве до 10,0 мас.% от массы носителя, подсушивают при температуре 100…120°С и прокаливают в воздушной среде при температуре 550…600°С, охлаждают, обрабатывают раствором хлористого палладия с содержанием палладия 1,5…4,0 г/л, сушат при температуре не более 120°С, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают в токе молекулярного водорода до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 1,0 мас.% при температуре 60…85°С.

Предлагаемое изобретение относится к химической технологии приготовления гетерогенных блочных катализаторов для каталитического окисления водорода и может быть использовано на предприятиях химической и ядерной промышленности.

Известен способ приготовления катализатора (Патент РФ №2169614. Опубликован 27.06.2001), состоящего из блочного металлического носителя, поверхность которого имеет промежуточное покрытие из модифицированного оксида алюминия, нанесенного суспензионным методом, с нанесенной на него активной фазой, содержащей один или нескольких каталитически активных металлов платиновой группы (Pt-Rh, Pt-Pd, Pt-Pd-Rh), и включающий термообработку инертного носителя, пропитку носителя с промежуточным покрытием водным раствором активного компонента.

К недостаткам катализатора относят его низкие значения термостабильности структурных характеристик, прочности каталитического покрытия.

Наиболее близким по технической сущности к заявляемому изобретению является способ приготовления катализатора (Патент РФ №2470708, Способ приготовления катализатора и катализатор окисления и очистки газов / Мальцева Н.В., Власов Е.А., Постнов А.Ю. и др. Опубликовано 27.12.2012), включающий в себя следующие стадии: предварительную обработку инертного блочного сотового носителя из Al-содержащей фольги прокаливанием в токе воздуха, нанесение на его поверхность промежуточного покрытия - модифицированного оксида алюминия из суспензии, термообработку блока с промежуточным покрытием при температуре 660-700°C, пропитку носителя с промежуточным покрытием раствором активной фазы, содержащей один или нескольких каталитически активных металлов платиновой группы (Pt-Rh, Pt-Pd, Pt-Pd-Rh). Катализатор, приготовленный таким способом, состоит из блочного металлического носителя, поверхность которого имеет промежуточное покрытие из модифицированного оксида алюминия, нанесенного суспензионным методом, с нанесенной на него активной фазой, содержащей один или несколько каталитически активных благородных металлов платиновой группы, содержащей (9,0…20,0) мас.% модифицированного Al2O3, имеющего удельную поверхность 120…140 м2/г, включающего оксид алюминия, оксид церия, причем модифицированный оксид алюминия дополнительно содержит базальт.

К недостаткам катализатора, приготовленного таким способом, можно отнести следующее: низкая активность катализатора, повышенные температуры эксплуатации блочного катализатора окисления водорода.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является способ приготовления блочного катализатора, предназначенного для повышения его активности в процессе окисления водорода и снижение температуры его эксплуатации.

Для достижения указанного технического результата предлагается способ приготовления катализатора, состоящего из керамического носителя с промежуточным покрытием из γ-оксида алюминия, и активной фазы, содержащей один каталитически активный благородный металл платиновой группы - палладий, включающий обработку, подготовку носителя, нанесение на его поверхность промежуточного покрытия - модифицированного оксида алюминия и последующую пропитку носителя раствором активной фазы и заключающийся в следующем.

Высокопористый ячеистый носитель для катализатора изготавливают из ретикулированного пенополиуретана, пропитывают последний шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), с последующей подсушкой при температуре 100…120°C и обжигом при температуре 1470…1510°C. В результате такой обработки органическая основа выгорает полностью и получается керамическая высокопористая блочно-ячеистая матрица с общей открытой пористостью не менее 90…93%, с микропористостью 20…30%, содержащий более 90% α-оксида алюминия. Для развития поверхности катализатора на полученную матрицу наносят промежуточное покрытие последовательной пропиткой раствором алюмозоля в количестве до 10 мас.% от массы носителя, затем образцы керамического носителя с промежуточным покрытием подсушивают при температуре 100…120°C, прокаливают при температуре 550…600°C, обрабатывают раствором хлористого палладия с содержанием палладия 1,5…4,0 г/л, сушат при температуре не более 120°C, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают в токе молекулярного водорода до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 1,0 мас.% при температуре 60…85°C.

Предлагаемый способ приготовления гетерогенного блочного высокопористого ячеистого катализатора для окисления водорода подтверждается следующими примерами.

Пример 1

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра, пропитывают керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), методом циклического сжатия и растяжения с последующей сушкой при температуре 100°C и обжигом при температуре 1470°C. В результате такой обработки органическая основа полностью выгорает. Образующаяся керамическая высокопористая блочно-ячеистая матрица содержит более 90% α-оксида алюминия.

Затем полученную матрицу последовательно пропитывают раствором алюмозоля в количестве до 9,1 мас.% от массы носителя, сушат при температуре 100°C, прокаливают при температуре 550°C, обрабатывают раствором хлористого палладия с содержанием палладия 1,5 г/л, сушат при температуре 115°C и прокаливают при температуре 450°C в воздушной среде, восстанавливают в токе молекулярного водорода в инертной среде при температуре 65°C до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 0,83 мас.%.

Исследование каталитической активности приготовленного таким способом блочного ячеистого катализатора окисления водорода проводили на экспериментальном стенде.

Воздух компрессором влажного воздуха подавали в установку через контроллер, предназначенный для измерения и регулирования потока. Компрессор влажного воздуха имеет производительность до 40 м3/ч. Относительная влажность и температура воздуха измеряются гигрометром. Подача водорода в основной поток из баллона дозируется с помощью газового контроллера.

Расход водорода, подаваемого в реактор, равнялся 75 мл/мин.

Далее газовая смесь поступает в электрообогреваемый теплообменник. Температуру потока после него контролировали с помощью термопары. Поток водородно-воздушной смеси с температурой 50,8°C направляли в стальной каталитический изотермический реактор с загруженным в него исследуемым образцом катализатора. Объем катализатора 54,8 см3, диаметр 30 мм, высота 83 мм, плотность 0,28 г/см3, общая открытая пористость 85%. Предел механической прочности при сжатии 3,2 МПа. Реактор (d=32 мм, Н=150 мм) термоизолирован, снабжен электрообогревом и автоматической системой поддержания заданной температуры, контролируемой с помощью помещенной непосредственно в реактор термопары. Выходящий после реактора поток газа поступает в охлаждаемый водой холодильник и затем в проточные датчики для измерения концентрации водорода: термокаталитический датчик с пределами измерения от 0 до 2000 ppm и влагомер.

Величина наблюдаемой константы скорости реакции, k, с-1: 8.83.

Для сравнения: блочный сотовый катализатор окисления водорода прототипа при расходе водорода, подаваемого в реактор, равном 192 мл/мин, температуре потока водородно-воздушной смеси 50,0°C имеет величину наблюдаемой константы скорости реакции k, с-1: 4.24.

Пример 2

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра пропитывают керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), методом циклического сжатия и растяжения с последующей сушкой при температуре 110°C и обжигом при температуре 1490°C. В результате такой обработки органическая основа полностью выгорает. Образующаяся керамическая высокопористая блочно-ячеистая матрица содержит более 90% α-оксида алюминия.

Затем полученную матрицу последовательно пропитывают раствором алюмозоля в количестве до 9,4 мас.% . от массы носителя, сушат при температуре 110°C, прокаливают при температуре 570°C, обрабатывают раствором хлористого палладия с содержанием палладия 2,5 г/л, сушат при температуре 120°C и прокаливают при температуре 465°C в воздушной среде, восстанавливают в токе молекулярного водорода в инертной среде при температуре 70°C до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 0,88 мас.%.

Исследование каталитической активности блочного ячеистого катализатора окисления водорода проводили по примеру 1.

Расход водорода, подаваемого в реактор, равнялся 75 мл/мин, температура потока водородно-воздушной смеси 75,8°C.

Величина наблюдаемой константы скорости реакции k, с-1: 38.53.

Для сравнения: блочный сотовый катализатор окисления водорода прототипа при расходе водорода, подаваемого в реактор, равном 192 мл/мин, температуре потока водородно-воздушной смеси 100,0°C имеет величину наблюдаемой константы скорости реакции k, с-1: 5.92.

Пример 3

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра пропитывают керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), методом циклического сжатия и растяжения с последующей сушкой при температуре 120°C и обжигом при температуре 1500°C. В результате такой обработки органическая основа полностью выгорает. Образующаяся керамическая высокопористая блочно-ячеистая матрица содержит более 90% α-оксида алюминия.

Затем полученную матрицу последовательно пропитывают раствором алюмозоля в количестве до 9,7 мас.%, от массы носителя, сушат при температуре 115°C, прокаливают при температуре 585°C, обрабатывают раствором хлористого палладия с содержанием палладия 3,2 г/л, сушат при температуре 120°C и прокаливают при температуре 485°C в воздушной среде, восстанавливают в токе молекулярного водорода в инертной среде при температуре 75°C до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 0,92% масс.

Исследование каталитической активности блочного ячеистого катализатора окисления водорода проводили по примеру 1.

Расход водорода, подаваемого в реактор, равнялся 75 мл/мин, температура потока водородно-воздушной смеси 96.4°C.

Величина наблюдаемой константы скорости реакции k, с-1: 70.71.

Для сравнения: блочный сотовый катализатор окисления водорода прототипа при расходе водорода, подаваемого в реактор, равном 192 мл/мин, температуре потока водородно-воздушной смеси 150,0°C имеет величину наблюдаемой константы скорости реакции k, с-1: 7.49.

Пример 4

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра пропитывают керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), методом циклического сжатия и растяжения с последующей сушкой при температуре 115°C и обжигом при температуре 1510°C. В результате такой обработки органическая основа полностью выгорает. Образующаяся керамическая высокопористая блочно-ячеистая матрица содержит более 90% α-оксида алюминия.

Затем полученную матрицу последовательно пропитывают раствором алюмозоля в количестве до 10,0% масс. от массы носителя, сушат при температуре 120°C, прокаливают при температуре 600°C, обрабатывают раствором хлористого палладия с содержанием палладия 4,0 г/л, сушат при температуре 120°C и прокаливают при температуре 500°C в воздушной среде, восстанавливают в токе молекулярного водорода в инертной среде при температуре 85°C до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 1,0% масс.

Исследование каталитической активности блочного ячеистого катализатора окисления водорода проводили по примеру 1.

Расход водорода, подаваемого в реактор, равнялся 75 мл/мин, температура потока водородно-воздушной смеси 115,2°C.

Величина наблюдаемой константы скорости реакции k, с-1: 95.0.

Для сравнения: блочный сотовый катализатор окисления водорода прототипа при расходе водорода, подаваемого в реактор, равном 192 мл/мин, температуре потока водородно-воздушной смеси 250,0°C имеет величину наблюдаемой константы скорости реакции k, с-1: 12.55.

Ячеистая структура гетерогенного блочного катализатора окисления водорода с большой внешней поверхностью обеспечивает увеличение наблюдаемой константы скорости реакции при увеличении линейной скорости газа за счет полного распределения газового потока по сечению катализатора и лучшего отвода продуктов и подвода реагентов к его активным центрам. В результате приготовленный по предлагаемому способу катализатор способен работать при больших скоростях и расходах в вентиляционных газовых потоках с малыми концентрациями водорода (в том числе, тритированного).

Разработанные гетерогенные блочные катализаторы окисления водорода начинают окислять водород при температуре 50-70°C и активно стабильно работают уже при 110°C, что предполагает значительное снижение энергозатрат (до 50%) на предварительный подогрев газа.

Способ приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий, включающий обработку, подготовку и пропитку носителя с промежуточным покрытием солевым раствором активной фазы, отличающийся тем, что носитель готовят из ретикулированного пенополиуретана путем пропитки керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), подсушивают при температуре 100…120°С, обжигают при температуре 1470…1510°С, затем полученную керамическую высокопористую блочно-ячеистую матрицу последовательно пропитывают раствором алюмозоля в количестве до 10,0 мас.% от массы носителя, подсушивают при температуре 100…120°С и прокаливают в воздушной среде при температуре 550…600°С, охлаждают, обрабатывают раствором хлористого палладия с содержанием палладия 1,5…4,0 г/л, сушат при температуре не более 120°С, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают в токе молекулярного водорода до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 1,0 мас.% при температуре 60…85°С.
Источник поступления информации: Роспатент

Показаны записи 161-170 из 599.
20.11.2014
№216.013.0779

Гармонический умножитель частоты

Изобретение относится к области радиоэлектроники и может быть использовано в качестве источника синусоидальных колебаний повышенной частоты и мощности. Достигаемый технический результат - формирование сигнала повышенной мощности. Гармонический умножитель частоты содержит входной...
Тип: Изобретение
Номер охранного документа: 0002533314
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ad5

Способ получения электролитических порошков металлов

Изобретение относится к порошковой металлургии, в частности к получению электролитических металлических порошков. Может использоваться в производстве катализаторов, гальванопластике, электронике. Катодное восстановление ионов металла из водного раствора соли металла осуществляют в электролизере...
Тип: Изобретение
Номер охранного документа: 0002534181
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b05

Композит на основе алюмосиликатной стеклокерамики и способ его получения (варианты)

Изобретение относится к области химической промышленности, теплоэнергетики, авиакосмической техники, в частности к композиту на основе алюмосиликатной стеклокерамики, армированной одной из наноформ углерода. Композит на основе стронцийалюмосиликатной стеклокерамики имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002534229
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f5c

Двухкаскадная баллистическая установка

Изобретение относится к области испытательной техники и предназначено для увеличения начальных скоростей полета метаемых объектов (МО) в процессе экспериментальной отработки новой техники с использованием ствольных пороховых баллистических установок. Двухкаскадная баллистическая установка...
Тип: Изобретение
Номер охранного документа: 0002535349
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fcd

Раздающая камера

Изобретение относится к теплотехнике. Раздающая камера (6) ограничена снаружи корпусом и днищем (3) и соединяет между собой центральный подводящий канал (9) и два боковых отводящих канала (1) через зазоры между днищем (3) и торцевыми частями внутренних стенок (2). Корпус образован двумя...
Тип: Изобретение
Номер охранного документа: 0002535462
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1082

Полупроводниковый лазер

Изобретение относится к квантовой электронике. Полупроводниковый лазер содержит гетероструктуру, выращенную на подложке GaAs, ограниченную перпендикулярными оси роста торцовыми поверхностями, с нанесенными на них покрытиями, с одной стороны - отражающим, а на другой - антиотражающим, и...
Тип: Изобретение
Номер охранного документа: 0002535649
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.123f

Устройство для формирования объемного самостоятельного разряда

Изобретение относится к лазерной технике. Устройство для формирования объемного самостоятельного разряда содержит герметичный корпус, в котором вдоль оси установлены два протяженных профилированных электрода, гальванически связанных с импульсным источником питания. Один из электродов закреплен...
Тип: Изобретение
Номер охранного документа: 0002536094
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1241

Способ определения пространственных координат движущегося объекта испытаний в виде тела вращения с известными геометрическими параметрами

Изобретение относится к способам определения пространственных координат (ПК), основанным на оптических схемах регистрации, а именно к теневым схемам фиксации положений объекта испытаний (ОИ) при высокоскоростном движении, и может быть использовано для определения ПК ОИ при исследованиях в...
Тип: Изобретение
Номер охранного документа: 0002536096
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1242

Измеритель вибрации

Изобретение относится к информационно-измерительной технике и может быть использовано в контрольно-сигнальной аппаратуре для измерения вибрации. Измеритель вибрации содержит вибропреобразователь, параллельную RC-цепь, первый операционный усилитель, первый и второй резистивные делители. Для...
Тип: Изобретение
Номер охранного документа: 0002536097
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1244

Стенд для испытаний объекта на температурные воздействия

Изобретение относится к испытательному оборудованию и может быть использовано при испытании объектов на температурные воздействия. Стенд содержит приспособление для установки объекта испытаний, источник температурного воздействия с системами подачи и слива воды, установленный под объектом...
Тип: Изобретение
Номер охранного документа: 0002536099
Дата охранного документа: 20.12.2014
Показаны записи 161-170 из 461.
27.10.2014
№216.013.032e

Способ стабилизации монорельсовой ракетной тележки (варианты) и устройство для его осуществления (варианты)

Изобретение относится к пусковым установкам, а именно к испытательным стендам. Стабилизирующее устройство монорельсовой ракетной тележки (РТ) ракетного трека содержит крыло в виде заостренной пластины, вал, устройство определения крена с гироскопом и двумя контактными датчиками, устройство...
Тип: Изобретение
Номер охранного документа: 0002532212
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.03e6

Способ окислительного разрушения азотсодержащих соединений и фосфорсодержащих соединений

Изобретение относится к способу разрушения азотсодержащих соединений и фосфорсодержащих соединений и может быть использовано для переработки растворов, образующихся при производстве и переработке ядерного топлива, содержащих соединения восстановленного азота, а также фосфорсодержащие...
Тип: Изобретение
Номер охранного документа: 0002532396
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04ed

Способ получения катализатора селективного гидрирования органических соединений

Изобретение относится к способу получения катализатора селективного гидрирования органических соединений, который включает пропитку ретикулированного пенополиуретана шликером, содержащим более 30% мас. α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалку при температуре...
Тип: Изобретение
Номер охранного документа: 0002532659
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0537

Способ получения катализатора жидкофазного гидрирования 2',4',4-тринитробензанилида

Изобретение относится к нефтехимическому синтезу, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-тринитробензанилида (ТНБА) с получением ароматических полиаминосоединений, нашедших широкое применение как промежуточные продукты в производстве красителей, термостойких...
Тип: Изобретение
Номер охранного документа: 0002532733
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0779

Гармонический умножитель частоты

Изобретение относится к области радиоэлектроники и может быть использовано в качестве источника синусоидальных колебаний повышенной частоты и мощности. Достигаемый технический результат - формирование сигнала повышенной мощности. Гармонический умножитель частоты содержит входной...
Тип: Изобретение
Номер охранного документа: 0002533314
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ad5

Способ получения электролитических порошков металлов

Изобретение относится к порошковой металлургии, в частности к получению электролитических металлических порошков. Может использоваться в производстве катализаторов, гальванопластике, электронике. Катодное восстановление ионов металла из водного раствора соли металла осуществляют в электролизере...
Тип: Изобретение
Номер охранного документа: 0002534181
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0b05

Композит на основе алюмосиликатной стеклокерамики и способ его получения (варианты)

Изобретение относится к области химической промышленности, теплоэнергетики, авиакосмической техники, в частности к композиту на основе алюмосиликатной стеклокерамики, армированной одной из наноформ углерода. Композит на основе стронцийалюмосиликатной стеклокерамики имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002534229
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f5c

Двухкаскадная баллистическая установка

Изобретение относится к области испытательной техники и предназначено для увеличения начальных скоростей полета метаемых объектов (МО) в процессе экспериментальной отработки новой техники с использованием ствольных пороховых баллистических установок. Двухкаскадная баллистическая установка...
Тип: Изобретение
Номер охранного документа: 0002535349
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fcd

Раздающая камера

Изобретение относится к теплотехнике. Раздающая камера (6) ограничена снаружи корпусом и днищем (3) и соединяет между собой центральный подводящий канал (9) и два боковых отводящих канала (1) через зазоры между днищем (3) и торцевыми частями внутренних стенок (2). Корпус образован двумя...
Тип: Изобретение
Номер охранного документа: 0002535462
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1082

Полупроводниковый лазер

Изобретение относится к квантовой электронике. Полупроводниковый лазер содержит гетероструктуру, выращенную на подложке GaAs, ограниченную перпендикулярными оси роста торцовыми поверхностями, с нанесенными на них покрытиями, с одной стороны - отражающим, а на другой - антиотражающим, и...
Тип: Изобретение
Номер охранного документа: 0002535649
Дата охранного документа: 20.12.2014
+ добавить свой РИД