×
10.11.2014
216.013.04ed

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения катализатора селективного гидрирования органических соединений, который включает пропитку ретикулированного пенополиуретана шликером, содержащим более 30% мас. α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалку при температуре 1050…1070°С, последующую многократную пропитку полученного высокопористого ячеистого носителя растворами алюмозоля до 6…10% мас., от массы носителя, сушку при температуре 100…120°С, прокалку при температуре 550…600°С, обработку раствором нитрата палладия, сушку при температуре не более 120°С и прокалку при температуре 450…500°C, восстановление полученного оксида палладия на носителе молекулярным водородом в азоте до металлического палладия с массовым содержанием не более 0,5% мас. при температуре 50…55°С, поверхность которого затем модифицируют наночастицами палладия радиационно-химическим методом. Технический результат заключается в увеличении срока службы катализатора, исключении стадии фильтрации целевого продукта от катализатора и получении чистого целевого продукта. 4 пр.
Основные результаты: Способ получения катализатора селективного гидрирования органических соединений, состоящего из носителя и активной части, содержащей нанодисперсные частицы металлов VIII группы, включающий обработку, подготовку и пропитку носителя раствором активной части, отличающийся тем, что носитель готовят из ретикулированного пенополиуретана путем пропитки шликером, содержащим более 30% мас. α-оксида алюминия, подсушивают при температуре 100…120°C, прокаливают при температуре 1050…1070°C, затем полученный высокопористый ячеистый носитель многократно пропитывают растворами γ-оксида алюминия до 6…10% мас. от массы носителя, подсушивают при температуре 100…120°C, прокаливают при температуре 550…600°C, обрабатывают раствором нитрата палладия, сушат при температуре не более 120°C, прокаливают при температуре 450…500°С в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в азоте до металлического палладия с массовым содержанием не более 0,5% мас. при температуре 50…55°С, поверхность которого модифицируют наночастицами палладия радиационно-химическим методом.
Реферат Свернуть Развернуть

Изобретение относится к химической промышленности: к производству гетерогенных катализаторов селективного гидрирования органических соединений и может быть использовано на предприятиях химической и фармацевтической промышленности для проведения реакций органического синтеза.

Известен способ получения катализатора селективного гидрирования органических соединений (Патент RU 2259877, B01J 23/89, B01J 23/84, B01J 37/02, C07C 5/09, C07C 11/67, от 03.05.2001), состоящего из носителя и активной части, включающий термохимическую подготовку носителя, пропитку носителя раствором активного компонента. Носитель представляет собой частицы, а активная часть - смесь металлов (медь, палладий и металл из: серебро, платина и т.д.) с максимальным содержанием более 40% мас., в расчете на общую массу катализатора.

К недостаткам катализатора относят его высокую стоимость, наличие стадии фильтрации целевого продукта от катализатора, загрязнение катализатором целевого продукта, безвозвратные потери катализатора.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения катализатора селективного гидрирования органических соединений (патент №2366504 РФ, Катализатор селективного гидрирования органических соединений и способ его получения / Асланов Л.А., Валецкий П.М., Волков В.В., Григорьев М.Е.), включающий в себя следующие стадии: термохимическую обработку носителя (сажи), пропитку носителя раствором активной части, после пропитки носителя дополнительное проведение восстановления металлов VIII группы сначала в щелочной среде при воздействии ультразвука, затем раствором формальдегида, далее нагрев катализатора в течение 5..10 часов при температуре реакции в растворе ионной жидкости и активатора для дополнительной активации катализатора в процессе проведения каталитической реакции. В результате получают катализатор селективного гидрирования органических соединений, включающий мезопористый углеродный носитель в виде частиц размером 25…35 нм и активную часть, содержащую нанодисперсные частицы металлов VIII группы, содержание которых на носителе составляет 1…10% мас.

К недостаткам катализатора селективного гидрирования, полученного таким способом, можно отнести следующие: быстрое разрушение катализатора из-за интенсивного перемешивания реакционной смеси, в которую добавляют катализатор, в реакторе, безвозвратные потери катализатора, наличие стадии фильтрации целевого продукта от катализатора, загрязнение целевого продукта катализатором.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является способ получения катализатора селективного гидрирования органических соединений, предназначенного для предотвращения разрушения катализатора, увеличения срока службы катализатора, исключения стадии фильтрации целевого продукта от катализатора и получения чистого целевого продукта.

Для достижения указанного технического результата предлагается способ получения катализатора селективного гидрирования органических соединений, состоящего из носителя и активной части, содержащей нанодисперсные частицы металлов VIII группы, включающий обработку, подготовку и пропитку носителя раствором активной части и заключающийся в следующем. Высокопористый ячеистый носитель для катализатора изготавливают из ретикулированного пенополиуретана, пропитывают последний шликером, содержащим более 30% мас. α-оксида алюминия с последующей подсушкой при температуре 100…120°C и прокаливанием при температуре 1050…1070°C. В результате такой обработки органическая основа выгорает полностью и получается блочный высокопористый ячеистый носитель с общей открытой пористостью не менее 90…93%, с микропористостью 20…30%, содержащий более 90% α-оксида алюминия. Для развития поверхности катализатора на носитель наносят активную подложку, многократно пропитывая носитель растворами алюмозоля до 6…10% мас. от массы носителя, затем образцы носителя подсушивают при температуре 100…120°C, прокаливают при температуре 550…600°C, обрабатывают раствором нитрата палладия, сушат при температуре не более 120°C, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в азоте до металлического палладия не более 0,5% мас. при температуре 50…55°C, затем поверхность металлического палладия модифицируют наночастицами палладия методом пропитки обратно-мицеллярным раствором наночастиц палладия выбранного размера (2…10 нм).

Стабильные наноразмерные частицы палладия получены радиационно-химическим восстановлением ионов Pd+2 в обратно-мицеллярной системе Pd+22О/АОТ [бис(2-этилгексил)сульфосукцинат)] в растворителе изооктан по методике, представленной в (см. Патент РФ №2212268, Приоритет от 10.08.2001 / А.А.Ревина).

Адсорбцию наночастиц палладия на высокопористый ячеистый керамический носитель с активной подложкой алюмозоля и каталитически активным металлическим палладием не более 0,5% мас. проводят при комнатной температуре в течение нескольких суток.

Предлагаемый способ получения блочного высокопористого ячеистого катализатора селективного гидрирования органических соединений подтверждается следующими примерами:

Пример 1

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% мас. α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…120°C и прокаливанием при температуре 1050°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем носитель многократно пропитывают растворами алюмозоля до 6…10% мас. от массы носителя, сушат при температуре 100…110°C, прокаливают при температуре 550°C, обрабатывают раствором нитрата палладия, сушат при температуре 115°C и прокаливают при температуре 450°C в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в инертной среде до металлического палладия содержанием 0,5% мас. при температуре 50°С.

В обогреваемый реактор, представляющий собой цилиндрическую емкость с внутренним диаметром 50 мм, изготовленную из нержавеющей стали, заливают раствор дибензальацетона массой 0,5 г.

Блочный высокопористый ячеистый катализатор, содержащий активную подложку γ-Al2O3 и 0,5% мас. металлического палладия массой 31,3 г, с общей открытой пористостью 90-93%, микропористостью 20…30%, помещают в среднюю часть реактора, обеспечивая его неподвижность за счет крепления крестовин и шайб. Реактор закрывают крышкой, в которой предусмотрены карман для термопары и штуцер для ввода водорода. Реактор с помощью специального зажима крепят на качалке, способной производить число качаний, равное 120-160 мин-1, при этом обеспечиваются условия, при которых протекание реакции селективного гидрирования не лимитируется диффузией компонентов к внешней поверхности блочного высокопористого ячеистого катализатора. Поддерживают заданную температуру, равную 200°С, в реакторе подачей теплоносителя в «рубашку» реактора из термостата. Реактор изолируют асбестом для предотвращения потерь тепла в окружающую среду. Подают водород в реактор и создают в нем давление, равное 0,6 МПа. Температура реакции равна 50°C. Скорость реакции при 50% превращении дибензальацетона равна 0,45 мл/с, коэффициент использования палладия, KPd=2,86 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР-спектроскопии. Данные анализов подтверждают селективное гидрирование дибензальацетона.

Пример 2.

Приготовление катализатора и проведение реакции гидрирования дибензальацетона аналогично примеру 1. Подают водород в реактор и создают в нем давление, равное 0,3 МПа. Температура реакции равна 70°C. Скорость реакции при 50% превращении исходного вещества равна 0,19 мл/с, коэффициент использования палладия, KPd=0,9 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР-спектроскопии. Данные анализов подтверждают селективное гидрирование дибензальацетона.

Пример 3.

Заготовку из ретикулированного пенополиуретана, изготовленную в виде цилиндра диаметром 50 мм и высотой 50 мм, пропитывают шликером, содержащим более 30% мас. α-оксида алюминия, методом циклического сжатия и растяжения с последующей сушкой при температуре 100…110°C и прокаливанием при температуре 1070°C. В результате такой обработки органическая основа полностью выгорает. Образующийся высокопористый носитель содержит более 90% α-оксида алюминия.

Затем носитель многократно пропитывают растворами алюмозоля до 6…10% мас. от массы носителя, сушат при температуре 100…110°С, прокаливают в интервале при температуре 600°С, обрабатывают раствором нитрата палладия, сушат при температуре 120°С и прокаливают при температуре 500°С в воздушной среде, восстанавливают полученный оксид палладия на носителе молекулярным водородом в азоте до металлического палладия содержанием 0,45% мас. при температуре 55°C, поверхность которого затем модифицируют наночастицами палладия.

В обогреваемый реактор, представляющий собой цилиндрическую емкость с внутренним диаметром 50 мм, изготовленную из нержавеющей стали, заливают раствор дибензальацетона массой 0,5 г.

Блочный высокопористый ячеистый катализатор, содержащий активную подложку γ-Al2O3 и металлический палладий 0,45% мас., поверхность которого модифицирована наночастицами палладия массой 40,6 г, с общей открытой пористостью 90-93%, микропористостью 20…30%, помещают в среднюю часть реактора, обеспечивая его неподвижность за счет крепления крестовин и шайб. Реактор закрывают крышкой, в которой предусмотрены карман для термопары и штуцер для ввода водорода. Реактор, с помощью специального зажима крепят на качалке, способной производить число качаний, равное 120-160 мин-1, при этом обеспечиваются условия, при которых протекание реакции селективного гидрирования не лимитируется диффузией компонентов к внешней поверхности блочного высокопористого ячеистого катализатора. Поддерживают заданную температуру, равную 200°C, в реакторе подачей теплоносителя в «рубашку» реактора из термостата. Реактор изолируют асбестом для предотвращения потерь тепла в окружающую среду. Подают водород в реактор и создают в нем давление, равное 0,6 МПа. Температура реакции равна 50°C. Скорость реакции при 50% превращении исходного вещества равна 2,50 мл/с, коэффициент использования палладия, KPd=12,00 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР-спектроскопии. Данные анализов подтверждают селективное гидрирование дибензальацетона. Более эффективное селективное гидрирование дибензальацетона (по сравнению с примером 1) происходит на блочном высокопористом ячеистом катализаторе, содержащем на металлической поверхности палладия наночастицы палладия.

По данным 1Н ЯМР-спектроскопии процесс селективного гидрирования дибензальацетона происходит с высокой степенью селективности восстановления C=C и сохранением C=O связи.

Пример 4. Приготовление катализатора и проведение реакции гидрирования дибензальацетона аналогично примеру 3. Подают водород в реактор и создают в нем давление, равное 0,3 МПа. Температура реакции равна 70°C. Скорость реакции при 50% превращении исходного вещества равна 1,45 мл/с, коэффициент использования палладия, KPd=4,10 мл/(с·г).

Контроль за процессом селективного гидрирования дибензальацетона осуществляли с использованием ИК- и 1Н ЯМР -спектроскопии. Более эффективное селективное гидрирование дибензальацетона (по сравнению с примером 2) происходит на блочном высокопористом ячеистом катализаторе, содержащем на металлической поверхности палладия наночастицы палладия.

По данным 1Н ЯМР-спектроскопии процесс селективного гидрирования дибензальацетона происходит с высокой степенью селективности восстановления C=C связи и сохранением C=O связи.

Блочный высокопористый ячеистый катализатор селективного гидрирования органических соединений, полученный по предлагаемому способу, имеет общую открытую пористость 90…93%, микропористость 20…30%, средний размер пор 0,5…2,0 мкм и механическую прочность на раздавливание, равную 0,6…1,2 МПа.

Во всех приведенных примерах после выполненных испытаний отсутствовала эрозия блочного высокопористого ячеистого катализатора, об этом можно было судить по прозрачности выгружаемого продукта. Катализатор выдерживает более 50 регенераций.

Применение блочного высокопористого ячеистого катализатора селективного гидрирования органических соединений снижает давление и температуру процесса селективного гидрирования, исключает измельчение и потерю катализатора, благодаря его жесткой ячеистой структуре и высокой механической прочности, а также позволяет исключить стадии фильтрации целевого продукта от катализатора и очистки целевого продукта от катализатора. Способ получения блочного высокопористого ячеистого катализатора селективного гидрирования органических соединений в несколько раз снижает содержание палладия в катализаторе, что уменьшает его стоимость.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 32.
10.02.2013
№216.012.2360

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ

Настоящее изобретение относится к области химической технологии высокопористых керамических материалов и предназначено для использования непосредственно для фильтрации и адсорбции газообразных радиоактивных и вредных веществ в условиях высоких температур (свыше 1000°С) и химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002474558
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26d8

Способ изготовления высокопористых ячеистых керамических изделий

Изобретение относится к химической технологии высокопористых керамических изделий с ячеистой структурой, которые могут использоваться в качестве носителей катализаторов жидкофазных процессов, фильтров, насадки для массо- и теплообменных процессов, высокотемпературных теплоизоляционных...
Тип: Изобретение
Номер охранного документа: 0002475464
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2d7b

Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия. Способ включает получение наночастиц серебра при радиационно-химическом восстановлении ионов серебра из обратномицеллярного...
Тип: Изобретение
Номер охранного документа: 0002477174
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2d7c

Способ получения катализатора для изотопного обмена протия-дейтерия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла в обратномицеллярном растворе и последующее нанесение наночастиц металла на носитель AlO, обратномицеллярный...
Тип: Изобретение
Номер охранного документа: 0002477175
Дата охранного документа: 10.03.2013
10.05.2013
№216.012.3ce4

Способ получения катализатора для изотопного обмена протия-дейтерия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла при восстановлении ионов металла в обратномицеллярном растворе, состоящем из раствора соли металла,...
Тип: Изобретение
Номер охранного документа: 0002481155
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.3fc1

Способ получения катализатора для орто-пара конверсии протия

Изобретение относится к области гетерогенного катализа. Способ включает получение наночастиц родия или рутения при восстановлении ионов соответствующего металла под воздействием γ-излучения Со в обратномицеллярном растворе. Раствор содержит соль металла: RhCl или RuOHCl,...
Тип: Изобретение
Номер охранного документа: 0002481891
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.43b9

Способ получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия. Способ включает получение наночастиц серебра при радиационно-химическом восстановлении ионов серебра из обратномицеллярного...
Тип: Изобретение
Номер охранного документа: 0002482914
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4c74

Способ очистки сульфатного скипидара от сернистых соединений

Изобретение может быть использовано в органическом синтезе и фармакологии. Способ очистки сульфатного скипидара от сернистых соединений включает предварительный нагрев сульфатного скипидара до температуры 70-80°С и приведение его в соприкосновение с катализатором при температуре 60-90°С и...
Тип: Изобретение
Номер охранного документа: 0002485154
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.5f6d

Способ получения катализатора для изотопного обмена протия-дейтерия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла при восстановлении ионов металла в обратномицеллярном растворе, состоящем из раствора соли металла,...
Тип: Изобретение
Номер охранного документа: 0002490061
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
Показаны записи 1-10 из 30.
10.02.2013
№216.012.2360

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ

Настоящее изобретение относится к области химической технологии высокопористых керамических материалов и предназначено для использования непосредственно для фильтрации и адсорбции газообразных радиоактивных и вредных веществ в условиях высоких температур (свыше 1000°С) и химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002474558
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26d8

Способ изготовления высокопористых ячеистых керамических изделий

Изобретение относится к химической технологии высокопористых керамических изделий с ячеистой структурой, которые могут использоваться в качестве носителей катализаторов жидкофазных процессов, фильтров, насадки для массо- и теплообменных процессов, высокотемпературных теплоизоляционных...
Тип: Изобретение
Номер охранного документа: 0002475464
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2d7c

Способ получения катализатора для изотопного обмена протия-дейтерия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла в обратномицеллярном растворе и последующее нанесение наночастиц металла на носитель AlO, обратномицеллярный...
Тип: Изобретение
Номер охранного документа: 0002477175
Дата охранного документа: 10.03.2013
10.05.2013
№216.012.3ce4

Способ получения катализатора для изотопного обмена протия-дейтерия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла при восстановлении ионов металла в обратномицеллярном растворе, состоящем из раствора соли металла,...
Тип: Изобретение
Номер охранного документа: 0002481155
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.3fc1

Способ получения катализатора для орто-пара конверсии протия

Изобретение относится к области гетерогенного катализа. Способ включает получение наночастиц родия или рутения при восстановлении ионов соответствующего металла под воздействием γ-излучения Со в обратномицеллярном растворе. Раствор содержит соль металла: RhCl или RuOHCl,...
Тип: Изобретение
Номер охранного документа: 0002481891
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4c74

Способ очистки сульфатного скипидара от сернистых соединений

Изобретение может быть использовано в органическом синтезе и фармакологии. Способ очистки сульфатного скипидара от сернистых соединений включает предварительный нагрев сульфатного скипидара до температуры 70-80°С и приведение его в соприкосновение с катализатором при температуре 60-90°С и...
Тип: Изобретение
Номер охранного документа: 0002485154
Дата охранного документа: 20.06.2013
20.08.2013
№216.012.5f6d

Способ получения катализатора для изотопного обмена протия-дейтерия

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла при восстановлении ионов металла в обратномицеллярном растворе, состоящем из раствора соли металла,...
Тип: Изобретение
Номер охранного документа: 0002490061
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
10.01.2014
№216.012.93d3

Гранулирующий шнековый пресс для формования катализаторных паст

Гранулирующий шнековый пресс для формования катализаторных паст относится к области экструзионного формования высококонцентрированных дисперсных, преимущественно жестких паст с получением зерен различных типоразмеров в технологии катализаторов, сорбентов, а также может быть использован в других...
Тип: Изобретение
Номер охранного документа: 0002503537
Дата охранного документа: 10.01.2014
10.04.2014
№216.012.afe6

Гранулирующий шнековый пресс

Гранулирующий шнековый пресс относится к устройствам переработки высококонцентрированных полидисперсных композиций с повышенной вязкостью методом проходного прессования и может быть использовано в различных отраслях промышленности. Гранулирующий шнековый пресс включает корпус, шнек и...
Тип: Изобретение
Номер охранного документа: 0002510745
Дата охранного документа: 10.04.2014
+ добавить свой РИД