×
27.02.2015
216.013.2c14

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает формирование пористой структуры посредством обжига порошка манганита лантана-стронция при температуре синтеза не менее 1300°C, при этом сначала проводят обжиг порошка манганита лантана-стронция при температурах 1100°C и 1200°C на воздухе с изотермическими выдержками 14 и 10 часов соответственно, а затем полученный порошок прессуют с использованием в качестве связующего 1%-ного раствора полибутилметакрилата в ацетоне в количестве 0,2 мл на 5 г порошка, окончательный синтез осуществляют при температуре 1450°C на воздухе в течение 10 часов. В предложенном способе не предусмотрено использование порообразователя, при этом полученные оксиды примерно обладают одинаковой пористостью, в частности 20-25% процентов при температуре спекания 1450°C, что является техническим результатом изобретения. 5 ил.
Основные результаты: Способ изготовления пористых катодных материалов на основе манганита лантана-стронция, включающий формирование пористой структуры посредством обжига порошка манганита лантана-стронция при температуре синтеза не менее 1300°C, отличающийся тем, что вначале проводят обжиг порошка манганита лантана-стронция при температурах 1100°C и 1200°C на воздухе с изотермическими выдержками 14 и 10 часов соответственно, полученные порошки прессуют с использованием в качестве связующего 1%-ного раствора полибутилметакрилата в ацетоне в количестве 0,2 мл на 5 г порошка, окончательный синтез осуществляют при температуре 1450°C на воздухе в течение 10 часов.

Изобретение относится к электротехнике и может быть использовано при изготовлении пористых катодных материалов на основе манганита лантана-стронция для электрохимических устройств, в частности твердооксидных топливных элементов (ТОТЭ), эксплуатируемых при высоких температурах.

Использование в электрохимических устройствах пористых катодных материалов известно. Пористость этих материалов должна быть в пределах 20-40% и должна сохраняться в процессе эксплуатации ТОТЭ. В тех случаях когда при формировании ячеек электроды ТОТЭ являются несущими, они должны изготавливаться при температуре выше температуры формирования на них газоплотного твердого электролита (≥1300°C).

Известно, что для формирования пористой структуры материалов на основе LSM при температурах выше 1250°C в качестве порообразователя используют графит (K. Yamahara etc. Catalyst-infiltrated supporting cathode for thin-film SOFCs // Solid States Ionics. 2005. №176. P.451-456) [1]. Количество порообразователя варьировалось, а температура спекания оставалась неизменной и составляла T=1250°C. При введении 45% графита относительно керамического материала (LSM) пористость катодного материала составляет 40-45%, а при использовании 50% графита - примерно 51-58%.

Пористые катодные подложки из La0.6Sr0.4MnO3 с пористостью 30-35% для твердооксидных топливных элементов с пленочным электролитом были получены в работе (А.А. Куртеева и др. Возможности регулирования микроструктуры и электропроводности несущих катодных подложек из La(Sr)MnO3 // Электрохимия. 2010. Т.46. №7. С.864-872) [2]. При использовании различных условий их приготовления (керамический и «полухимический» способы синтеза исходных порошков, различный уровень их диспергирования, использование порообразователя, введение спекающей добавки) показано, что за счет перечисленных факторов температуру спекания подложек LSM до получения относительной плотности 65-70% можно изменять от 1050 до 1350-1400°C. Это позволит получать на таких подложках электролитные пленки из порошков с различной способностью к спеканию. Этот способ взят за прототип заявленного изобретения.

Известные способы получения пористых катодных материалов основаны на введении в порошок LSM порообразователя для последующего формирования пористой подложки. К существенным недостаткам введения порообразователя в порошок LSM относится неполное выгорание угля, что может привести к ряду факторов, вызывающих деградацию катодов: образование карбонатов, блокирующих реакцию обмена, различные механические и термические перенапряжения и другие.

Задача настоящего изобретения заключается в получении пористых катодных материалов на основе манганита лантана-стронция для высокотемпературных электрохимических устройств без дефектов, вызываемых применением порообразователя.

Для решения поставленной задачи предложен способ изготовления пористых катодных материалов на основе манганита лантана-стронция, который, как и известный, включает формирование пористой структуры посредством обжига порошка манганита лантана-стронция при температуре синтеза не менее 1300°C. Способ отличается тем, что вначале производят обжиг порошка манганита лантана-стронция при температурах 1100°C и 1200°C на воздухе с изотермическими выдержками 14 и 10 часов соответственно, полученные порошки прессуют с использованием в качестве связующего 1%-ного раствора полибутилметакрилата (ПБМА) в ацетоне в количестве 0,2 мл на 5 г порошка. Большее количество ПБМА будет увеличивать вязкость связующего вещества, что препятствует равномерному его распределению в порошке. Окончательный синтез осуществляют при температуре T=1450°C на воздухе в течение 10 часов.

В заявленном способе получение пористого материала La1-xSrxMnO3±δ при температуре синтеза выше 1300°C происходит за счет кинетики роста и спекания зерен в процессе многостадийного обжига шихты. При этом начальный этап обжига при температурах 1100°C и 1200°C на воздухе с изотермическими выдержками 14 и 10 часов при каждой температуре соответственно приводит к увеличению среднего размера частиц порошка с 0.5 до 2 мкм и уменьшению удельной поверхности порошка с 6 до 0.86 м2/г. Прессование полученных порошков с использованием связующего - 1%-ного раствора полибутилметакрилата в ацетоне улучшает формование материала. Окончательный синтез, который осуществляют при температуре 1450°C на воздухе в течение 10 часов, позволяет получить однофазную пористую керамику состава La1-xSrxMnO3±δ. Введение в шихту порообразователя при этом не требуется, что исключает загрязнение образцов. Заявленное изобретение дает возможность получения керамики с пористостью 20-25% при температуре спекания 1450°C без использования порообразователя.

Новый технический результат, достигаемый заявленным изобретением, заключается в получении пористой керамики при высокой температуре синтеза без применения порообразователя.

Способ осуществляли следующим образом. Оксиды La1-xSrxMnO3±δ синтезировали по керамической технологии. В качестве исходных компонентов использовали La2O3 (ЛаО-Д), Mn2O3 (ос.ч.) и SrCO3 (ос.ч.). Исходные вещества смешивали в стехиометрическом соотношении с учетом потерь при прокаливании. Полученные порошки подвергали начальному обжигу при 1100°C с изотермической выдержкой 14 часов (4.5 ч +5 ч + 4.5 ч) и при 1200°C на воздухе с изотермической выдержкой 10 часов. Для гомогенизации порошка, обеспечивающей улучшение спекаемости материала, на промежуточных стадиях синтеза, то есть через 4.5, 5, 4.5 ч обжига при 1100°C и после обжига при 1200°C обжигаемый порошок перетирали в этиловом спирте.

Полученные порошки прессовали в форме прямоугольного параллелепипеда, в качестве связующего вещества использовали 1%-ный раствор ПБМА в ацетоне. Окончательный синтез катодного материала осуществляли при 1450°C на воздухе в течение 10 часов.

Для аттестации и контроля синтезируемого материала на промежуточных стадиях в процессе синтеза оксидов La1-xSrxMnO3±δ методом низкотемпературной адсорбции азота определяли удельную поверхность частиц полученного материла. Методом лазерного светорассеяния определяли распределение размеров частиц. На рисунках приведены микрофотографии с поперечного сечения спеченного материала La0.6Sr0.4MnO3-δ. На фиг.1 представлены функции распределения размеров частиц порошка, где кривая 1 соответствует функции распределения размеров частиц смеси исходных компонентов, кривая 2 - функции распределения размеров частиц шихты после обжига при T=1100°C в течение 4.5 ч, кривая 3 - функции распределения размеров частиц шихты после обжига 1100°C в течение 5 ч, кривая 4 - функции распределения размеров частиц шихты после обжига при 1100°C в течение 4.5 ч и 1200°C в течение 10 ч. На фиг.2 изображена микрофотография сечения спеченного материала La0.6Sr0.4MnO3-δ в излучении вторичных электронов, на фиг.3 - микрофотография сечения спеченного материала La0.6Sr0.4MnO3-δ в обратно рассеянных электронах. На фиг.4 и 5 представлены микрофотографии с поверхности оксидов состава LaMnO3±δ, La0.6Sr0.4MnO3-δ соответственно.

Как видно из рисунков, представленных на фиг.2 и 3, полученный оксид однофазный и не содержит включения дополнительных фаз. Контраст на изображениях, приведенных на фиг.2 и 3, обусловлен, главным образом, химическим составом исследуемой поверхности. Из микрофотографий, представленных на фиг.4 и 5, видно, что полученные оксиды имеют примерно одинаковую пористость.

Таким образом, заявленный способ позволяет без применения порообразователя изготавливать катодные материалы на основе манганита лантана-стронция керамики с пористостью 20-25% при температуре спекания 1450°C.

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция, включающий формирование пористой структуры посредством обжига порошка манганита лантана-стронция при температуре синтеза не менее 1300°C, отличающийся тем, что вначале проводят обжиг порошка манганита лантана-стронция при температурах 1100°C и 1200°C на воздухе с изотермическими выдержками 14 и 10 часов соответственно, полученные порошки прессуют с использованием в качестве связующего 1%-ного раствора полибутилметакрилата в ацетоне в количестве 0,2 мл на 5 г порошка, окончательный синтез осуществляют при температуре 1450°C на воздухе в течение 10 часов.
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАНГАНИТА ЛАНТАНА-СТРОНЦИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 96.
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2a37

Электрохимический способ нанесения электропроводящего оксидного защитного покрытия интерконнектора

Изобретение относится к технологиям нанесения электропроводного покрытия на интерконнекторы катодной камеры твердооксидных топливных элементов. Способ включает электроосаждение слоя из La и 3d-металлов Mn, Co, Cu, Ni из раствора хлоридов используемых металлов в протофильном протонном...
Тип: Изобретение
Номер охранного документа: 0002643032
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
Показаны записи 51-60 из 63.
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2a37

Электрохимический способ нанесения электропроводящего оксидного защитного покрытия интерконнектора

Изобретение относится к технологиям нанесения электропроводного покрытия на интерконнекторы катодной камеры твердооксидных топливных элементов. Способ включает электроосаждение слоя из La и 3d-металлов Mn, Co, Cu, Ni из раствора хлоридов используемых металлов в протофильном протонном...
Тип: Изобретение
Номер охранного документа: 0002643032
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
06.07.2018
№218.016.6cc7

Способ соединения трубчатых топливных элементов

Изобретение относится к технологиям сборки конструкции подблоков трубчатых топливных элементов. Способ включает последовательное соединение топливных элементов, содержащих несущую основу из электролита и нанесенные на нее слои электродов, посредством интерконнектора в виде ступенчатого кольца...
Тип: Изобретение
Номер охранного документа: 0002660124
Дата охранного документа: 05.07.2018
25.10.2018
№218.016.9599

Способ модификации электродных материалов

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002670427
Дата охранного документа: 23.10.2018
+ добавить свой РИД