×
20.02.2015
216.013.2b16

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов в природных объектах и дифференциальной диагностики инфекционных заболеваний. Электрохимический способ определения содержания грамотрицательных патогенных бактерий предполагает использование в качестве сигналообразующей метки электроактивных магнитных нанокомпозитных частиц, которые перед стадией конъюгирования получают путем создания на поверхности магнитных наночастиц переходных металлов или их соединений электроактивного полимерного покрытия. Концентрацию патогенных микроорганизмов определяют путем получения электрохимического отклика, регистрируемого напрямую в результате электропревращения электроактивного полимерного покрытия. Изобретение направлено на упрощение анализа, увеличение чувствительности, экспрессности, воспроизводимости, а также на расширение круга электрохимически активных меток. Использование полимерного покрытия позволяет добиться высокой чувствительности и воспроизводимости анализа. 7 ил. 6 пр.
Основные результаты: Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде, характеризующийся конъюгированием бактерий с электрохимической меткой, в качестве которой используют магнитные нанокомпозитные частицы на основе Fe, FeO с электроактивным полимерным покрытием из полипиррола, модифицированного хинолином поливинилбензилхлорида либо модифицированного ферроценом оксида кремния, осуществляемым в водной среде в течение 30 минут при температуре 37С, отделением несвязавшихся нанокомпозитных частиц с использованием магнитного поля, помещением в среду рабочего электрода, изготовленного из графитсодержащих материалов, поверхность которого предварительно модифицируют антителами, специфичными к определяемому штамму бактерий, образованием иммунокомплекса на поверхности электрода в течение 20 минут при температуре 37С с использованием магнитного поля, промыванием электрода буферным раствором, содержащим нормальную лошадиную сыворотку и твин-20, помещением извлеченного из анализируемой среды рабочего электрода в электрохимическую ячейку, содержащую фоновый электролит KNO, растворенный в воде, и определением содержания определяемых бактерий по величине аналитического сигнала, в качестве которого используют электрохимический отклик окисления/восстановления нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности рабочего электрода.

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания патогенных микроорганизмов в природных объектах и дифференциальной диагностики инфекционных заболеваний.

Недостатками используемых в настоящее время методов являются: низкая чувствительность (реакции агглютинации), высокая стоимость используемых реагентов и оборудования (иммуноферментный анализ), необходимость создания специальных условий (метод анализа, основанный на полимеразной цепной реакции) и длительность проведения анализа (бактериальный посев).

Для мониторинга колиформных бактерий, продуцирующих в результате своей жизнедеятельности фенол, предлагают использовать амперометрический тирозиназный сенсор и аминомодифицированный магнетит, осажденный на углеродных нанотрубках. Эту систему используют для детектирования фенола. Тирозиназа катализирует окисление фенольных соединений в присутствии кислорода с получением о-хинонов, которые могут быть восстановлены электрохимически при низких потенциалах без медиаторов. Однако в данном методе требуется ≈4 часа для предварительной активации β-D-галактрозидазы и другие длительные подготовительные процедуры. Отсутствие специфичности реакции также является недостатком данного метода (Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms/Yuxiao Cheng, Yajun Liu, Jingjing Huang et all//Electrochimica Acta, 2009, V.54, P.2588-2594).

Предложен метод обнаружения бактерий E.Coli при помощи кварцевого сенсора с использованием наночастиц магнетита, покрытых декстраном, и наночастиц золота, покрытых стрептавидином. Данный метод до момента непосредственного детектирования включает в себя 7 предварительных стадий (таких как инкубирование, сепарирование, декантирование). Помимо значительного увеличения продолжительности анализа, все эти стадии вносят огромный вклад в погрешность измерения (QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold/Zhi-Qiang Shen, Jing-Feng Wang, Zhi-Gang Qiu et all/Biosensors and Bioelectronics, 2011, V.26, P.3376-3381).

Также для детектирования бактерий E.Coli предложено использовать магнитоэластичный сенсор, модифицированный полиуретаном и наночастицы магнетита модифицированные хитозаном. Подготовленный сенсор помещается в кювету с суспензией магнетита, модифицированного хитозаном, и E.Coli. Затем вся система помещается в катушку соленоида, от которой получают сигнал. Измеряется резонансная частота сенсора. При pH 5-6.5 бактерии электростатически притягиваются к наночастицам, затем наночастицы примагничиваются к сенсору, уменьшая его резонансную частоту. Однако данный метод также лишен специфичности (Detection of pathogen Escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles/Hailan Lin, Qingzhu Lu, Shutian Ge, Qingyun Cai et all//Sensors and Actuators B, 2010, V.147, P.343-349).

Наиболее близким техническим решением, выбранным в качестве прототипа, служит способ определения патогенных микроорганизмов, включающий конъюгацию патогенного микроорганизма с магнитными наночастицами в анализируемой среде с последующим концентрированием конъюгатов и определением наличия и концентрации патогенных микроорганизмов с помощью электроактивной сигналообразующей метки. В качестве магнитных наночастиц и, одновременно, электроактивной сигналообразующей метки авторы использовали наночастицы переходного металла. Перед концентрированием меченых конъюгатов наночастицы, несвязанные с патогенными микроорганизмами, выводили из анализируемой среды. Концентрирование меченого конъюгата осуществляли путем формирования на электроде иммунокомлекса «меченный магнитной меткой патогенный микроорганизм - антитело» с последующим изъятием иммунокомплекса из среды на электроде. Далее проводили кислотную обработку электрода, содержащего меченый иммунокомплекс. Определение наличия и концентрации патогенных микроорганизмов осуществляли по сигналу, генерируемому ионами переходного металла, получаемых путем кислотного разрушения иммунокомплекса (Патент РФ №2397243 от 20.08.2010).

К недостаткам данного способа следует отнести многостадийность процесса анализа, низкий предел обнаружения, высокую трудоемкость процесса, большие временные затраты, а также высокие требования к квалификации операторов.

Предлагаемое техническое решение направлено на упрощение анализа, увеличение чувствительности, экспрессности, воспроизводимости, а также на расширение круга электрохимически активных меток.

Указанный технический эффект достигается тем? что предлагаемый способ электрохимического иммуноанализа включает в себя конъюгацию патогенных микроорганизмов с электроактивными магнитными нанокомпозитными частицами, магнитную сепарацию с последующим концентрированием конъюгатов и определением наличия и концентрации патогенных микроорганизмов с помощью сигналобразующей метки, локализованной путем образования иммунокомплекса на поверхности электрода, в качестве которой выступают электроактивные магнитные нанокомпозитные частицы. Концентрацию патогенных микроорганизмов определяют путем получения прямого электрохимического отклика от электроактивных магнитных нанокомпозитных частиц, регистрируемого в результате электрохимического превращения электроактивного полимерного покрытия (полимерного покрытия, модифицированного электроактивными соединениями) наночастиц.

Указанные отличительные признаки существенны. Получение электрохимического отклика от метки в результате разряда непосредственно электроактивного полимерного покрытия (полимерного покрытия, модифицированного электроактивными соединениями) электроактивных магнитных нанокомпозитных частиц позволит исключить из процедуры иммуноанализа стадию кислотного разложения иммунокомплекса и увеличить экспрессность и чувствительность способа определения патогенных микроорганизмов.

Кроме того, создание на поверхности магнитных наночастиц электроактивного полимерного покрытия (полимерного покрытия, модифицированного электроактивными соединениями) приводит к уменьшению поверхностной энергии наночастиц и позволит предотвратить их агрегацию, в результате чего размер частиц не изменяется в течение эксперимента. Таким образом, использование полимерного покрытия позволит добиться высокой чувствительности и воспроизводимости анализа.

Использование магнитных нанокомпозитных частиц с электроактивным полимерным покрытием (полимерным покрытием, модифицированным электроактивными соединениями) позволит расширить круг потенциальных электрохимически активных меток

Предложенный способ иммуноанализа позволит существенно снизить материало- и трудозатраты на проведение анализа, увеличить производительность и уменьшить себестоимость определения.

Таким образом, из патентной и научно-технической литературы не известен способ определения патогенных микроорганизмов заявляемой совокупности признаков.

На фигуре 1 изображен общий вид рабочего электрода, где 1 - подложка из стеклотекстолита, 2 - дорожка из токопроводящего материала (графитовая композиция, углеродные чернила), 3 - слой изолятора или цементита.

На фигуре 2 представлены циклические вольтамперограммы, зарегистрированные в модельных растворах, содержащих (а, 4-5) и не содержащих (б, 4-5) микроорганизмы Е.Coli (штамм O-12).

4 - вольтамперограмма фонового электролита, 5 - вольтамперограмма модельного раствора.

На фигуре 3 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 6-7) и не содержащих (б, 6-7) микроорганизмы Е.Coli (штамм O-12).

6 - вольтамперограмма фонового электролита, 7 - вольтамперограмма пробы.

На фигуре 4 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 8-9) и не содержащих (б, 8-9) микроорганизмы Е.Coli (штамм O-12).

8 - вольтамперограмма фонового электролита, 9 - вольтамперограмма пробы.

На фигуре 5 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 10-11) и не содержащих (б, 10-11) микроорганизмы Е.Coli (штамм O-12).

10 - вольтамперограмма фонового электролита, 11 - вольтамперограмма пробы.

На фигуре 6 представлены циклические вольтамперограммы, зарегистрированные в модельных растворах, содержащих (а, 12-13) и не содержащих (б, 12-13) микроорганизмы Salmonella typhimurium (штамм SL 7207).

12 - вольтамперограмма фонового электролита, 13 - вольтамперограмма модельного раствора.

На фигуре 7 представлены циклические вольтамперограммы, зарегистрированные в пробах, содержащих (а, 14-15) и не содержащих (б, 14-15) микроорганизмы Salmonella typhimurium (штамм SL 7207).

14 - вольтамперограмма фонового электролита, 15 - вольтамперограмма пробы.

Способ иллюстрируется следующими примерами.

Пример 1.

Вытяжку анализируемой среды (модельного раствора) инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-полипиррол при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТГЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления полипиррольного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТГЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.2). В модельном растворе обнаружили 5×103 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 2.

Вытяжку анализируемой среды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe-полипиррол при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТУЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют 0,1 М раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления полипиррольного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТУЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.3). В пробе, взятой у пациента, обнаружили 2×104 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 3.

Вытяжку анализируемой среды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-модифицированный ферроценом оксид кремния при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТГЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления ферроценовых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТГЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.2). В пробе, взятой у пациента, обнаружили 1,5×103 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 4.

Пробу воды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-модифицированный ферроценом оксид кремния при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТУЭ (фиг.1), модифицированный антителами против Е.Coli (штамм O-12), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют 0,1 М раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик окисления ферроценовых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТУЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Е.Coli (штамм O-12) (фиг.3). В пробе обнаружили 2,3×102 клеток/мл микроорганизма Е.Coli (штамм O-12).

Пример 5.

Вытяжку анализируемой среды (модельный раствор) инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe-модифицированный хинолином поливинилбензилхлорид при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТГЭ (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик восстановления хинолиновых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТГЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.2). В модельном растворе обнаружили 6×103 клеток/мл микроорганизма Salmonella typhimurium (штамм SL 7207).

Пример 6.

Вытяжку анализируемой среды инкубируют в течение 30 минут с электроактивными магнитными нанокомпозитными частицами Fe3O4-модифицированный хинолином поливинилбензилхлорид при температуре 37°С. После инкубации несвязавшиеся электроактивные магнитные нанокомпозитные частицы отделяют с использованием магнитного поля. В подготовленную таким образом вытяжку помещают ТУЭ (фиг.1), модифицированный антителами против Salmonella typhimurium (штамм SL 7207), и выдерживают в течение 20 минут при температуре 37°С. Для ускорения доставки меченых микроорганизмов к поверхности сенсора используют магнитное поле. Затем электрод промывают буферным раствором, содержащим нормальную лошадиную сыворотку (НЛС) и твин-20. Извлеченный из анализируемого раствора электрод помещают в электрохимическую ячейку. В качестве фонового электролита используют раствор KNO3 в воде. В качестве аналитического сигнала используют электрохимический отклик восстановления хинолиновых групп полимерного покрытия электроактивных магнитных нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности ТУЭ. Для проведения холостого опыта используют раствор, не содержащий микроорганизмы Salmonella typhimurium (штамм SL 7207) (фиг.2). В пробе, взятой у пациента, обнаружили 3,7×102 клеток/мл микроорганизма Salmonella typhimurium (штамм SL 7207).

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде, характеризующийся конъюгированием бактерий с электрохимической меткой, в качестве которой используют магнитные нанокомпозитные частицы на основе Fe, FeO с электроактивным полимерным покрытием из полипиррола, модифицированного хинолином поливинилбензилхлорида либо модифицированного ферроценом оксида кремния, осуществляемым в водной среде в течение 30 минут при температуре 37С, отделением несвязавшихся нанокомпозитных частиц с использованием магнитного поля, помещением в среду рабочего электрода, изготовленного из графитсодержащих материалов, поверхность которого предварительно модифицируют антителами, специфичными к определяемому штамму бактерий, образованием иммунокомплекса на поверхности электрода в течение 20 минут при температуре 37С с использованием магнитного поля, промыванием электрода буферным раствором, содержащим нормальную лошадиную сыворотку и твин-20, помещением извлеченного из анализируемой среды рабочего электрода в электрохимическую ячейку, содержащую фоновый электролит KNO, растворенный в воде, и определением содержания определяемых бактерий по величине аналитического сигнала, в качестве которого используют электрохимический отклик окисления/восстановления нанокомпозитных частиц, локализованных в иммунокомплексе на поверхности рабочего электрода.
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ГРАМОТРИЦАТЕЛЬНЫХ ПАТОГЕННЫХ БАКТЕРИЙ В АНАЛИЗИРУЕМОЙ СРЕДЕ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 121.
10.09.2014
№216.012.f335

Способ определения качества смазочных масел

Изобретение относится к технологии контроля качества смазочных масел при их применении и совместимости с материалами деталей машин. Способ заключается в том, что пробу масла постоянной массы нагревают при постоянной температуре с перемешиванием, через равные промежутки времени отбирают часть...
Тип: Изобретение
Номер охранного документа: 0002528083
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f76e

Стабилизатор липосомальных суспензий и способ его получения

Изобретение относится к стабилизатору для липосомальных суспензий для осуществления направленной транспортировки физиологически активных веществ с целью повышения терапевтической активности лекарственных препаратов. Предложенный стабилизатор включает модифицированный хитозан, который получают...
Тип: Изобретение
Номер охранного документа: 0002529179
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe8c

Устройство для раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочие ролики установлены параллельно оси корпуса устройства. При этом рабочая часть корпуса содержит шток, снабженный коническим элементом, выполненным с возможностью осевого перемещения,...
Тип: Изобретение
Номер охранного документа: 0002531020
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9f

Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров многокомпонентных металлических расплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли...
Тип: Изобретение
Номер охранного документа: 0002531039
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fea4

Рабочее вещество осл-детектора

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а...
Тип: Изобретение
Номер охранного документа: 0002531044
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feb0

Способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля

Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002531056
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feba

Устройство для крепления электронагревателя в электропечи

Изобретение относится к технической физике, а именно к анализу материалов путем определения вязкости и электрического сопротивления и плотности высокотемпературных металлических расплавов. Предлагается устройство для крепления электронагревателя в электропечи, содержащее, по крайней мере, два...
Тип: Изобретение
Номер охранного документа: 0002531066
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.02fe

Способ синтеза 5,5'-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена) - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 5,5'-(2,3,7,8-бис-(9Н,10Н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена), который включает взаимодействие 1,6-дибромпирена с 2-додецил-5-трибутилстаннилтиофеном по методу Стилле с получением первого полупродукта...
Тип: Изобретение
Номер охранного документа: 0002532164
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.03f0

Способ потенциометрического определения антиоксидантной/оксидантной активности с использованием комплексов металлов

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения...
Тип: Изобретение
Номер охранного документа: 0002532406
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
Показаны записи 21-30 из 177.
20.06.2013
№216.012.4ca6

Способ термической обработки отливок из безуглеродистых жаропрочных никелевых сплавов для монокристаллического литья

Изобретение относится к области металлургии сплавов, а именно к термической обработке отливок из безуглеродистых жаропрочных никелевых сплавов с монокристаллической структурой, предназначенных преимущественно для производства литых турбинных лопаток авиационных, транспортных и промышленных...
Тип: Изобретение
Номер охранного документа: 0002485204
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fcc

Способ производства труб

Изобретение предназначено для повышения точности и стабильности труб, получаемых волочением. Способ включает волочение трубы на длинной подвижной оправке через ряд роликовых волок. Повышение скорости волочения и величины деформации обеспечивается за счет того, что волочение проводят непрерывно...
Тип: Изобретение
Номер охранного документа: 0002486021
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.4fcf

Устройство для внутреннего профилирования труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочая часть корпуса выполнена в виде двух или более шпинделей, установленных один внутри другого с возможностью поворота относительно своей продольной оси, а ролики установлены на концевых...
Тип: Изобретение
Номер охранного документа: 0002486024
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50d1

Способ получения имплантированного ионами олова кварцевого стекла

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова. Упомянутый способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию...
Тип: Изобретение
Номер охранного документа: 0002486282
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5736

Метод определения неоплодотворенных яиц дрозофилы

Изобретение относится к области биохимии. Неразвившиеся яйца помещают на 45-50 минут в четырехпроцентный раствор гипохлорита натрия (NaOCl) и по количеству растворенных яиц определяют количество неоплодотворенных яиц. Предложенный метод позволяет осуществить массовые исследования достаточно...
Тип: Изобретение
Номер охранного документа: 0002487934
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.575a

Рабочий орган для удаления снежно-ледяного наката с поверхности дорог и аэродромов

Изобретение относится к машинам для очистки поверхности дорог и аэродромов в зимний период. Рабочий орган содержит раму, на которой шарнирно закреплены с возможностью поворота в вертикальной плоскости рычаги, несущие на свободных концах оси с режущими дисками с непрерывным односторонним...
Тип: Изобретение
Номер охранного документа: 0002487970
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59e9

Способ извлечения платины из шлама, получаемого при растворении платиносодержащего чугуна в серной кислоте

Изобретение относится к металлургии благородных металлов, в частности к переработке шламов и концентратов, содержащих элементные кремний, углерод и платину. Подобные шламы, в частности, образуются при растворении платиносодержащего чугуна в серной кислоте. Шламы смешивают с карбонатом натрия...
Тип: Изобретение
Номер охранного документа: 0002488638
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a48

Соединение трубопроводов

Изобретение относится к области соединения трубопроводов и может найти применение в конструкции соединений газонефтепроводов, водоводов и канализации. Технический результат заключается в снижении трудоемкости операций при демонтаже и замене изношенных участков трубопровода. Соединение...
Тип: Изобретение
Номер охранного документа: 0002488733
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5cb5

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Выщелачивают глиноземсодержащее сырье с получением алюминатного раствора и красного шлама, отделяют красный шлам от алюминатного раствора и его подают на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид...
Тип: Изобретение
Номер охранного документа: 0002489354
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.6000

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Глиноземсодержащее сырье выщелачивают с получением алюминатного раствора, отделяют его от красного шлама и направляют алюминатный раствор на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия....
Тип: Изобретение
Номер охранного документа: 0002490208
Дата охранного документа: 20.08.2013
+ добавить свой РИД