×
20.02.2015
216.013.2a79

Результат интеллектуальной деятельности: СПОСОБ ПАССИВНОГО ОБНАРУЖЕНИЯ ВОЗДУШНЫХ ОБЪЕКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных воздушными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат изобретения - расширение зоны действия системы обнаружения воздушных объектов, а также повышение точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, при наличии мешающих сигналов, переотраженных от объектов индустрии. Указанные результаты достигаются за счет применения антенн с широкой диаграммой направленности, а также за счет компенсации прямого сигнала передатчика и сигналов, отраженных от объектов индустрии, за счет усреднением оценки доплеровского сдвига частоты по оценкам, полученным в каждом из четырех приемных пунктов. 2 ил.
Основные результаты: Способ пассивного обнаружения воздушных объектов, заключающегося в том, что когерентно принимают двумя приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, формируют сигнал, зависящий от временного и частотного сдвигов комплексной взаимно корреляционной функции, отличающийся тем, что прямые и рассеянные сигналы дополнительно принимаются двумя приемными каналами, при этом все четыре приемных канала пространственно разнесены, и в каждом из четырех приемных каналов используется широконаправленная антенная система, а в качестве сигнала подсвета используются широкополосные сигналы синхронизации, наземных систем связи, цифрового телевидения либо других источников, которые заранее известны, рассчитываются комплексные временные взаимно корреляционная функции опорного сигнала и принятого сигнала подсвета, содержащего в себе прямой сигнал от передатчика, а также сигналы, отраженные от воздушного объекта, и сигналы, отраженные от окружающих приемные каналы объектов индустрии, в качестве опорного сигнала используется сигнал, совпадающий с сигналом подсвета, но не искаженный беспроводным каналом распространения радиоволн, по каждой из рассчитанных комплексных взаимно корреляционных функций производится оценка времени приема, частотного и фазового сдвигов, прямых сигналов, сигналов, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемный канал каждого из четырех приемных пунктов, зная полученные оценки, производится выделение сигналов, отраженных от воздушного объекта, и компенсация остальных сигналов, принятых в каждом из четырех приемных каналах, после чего производится повторная оценка фазового и частотного сдвига сигналов, отраженных от воздушного объекта, и принятого каждым из четырех приемных каналов, полученная оценка частотного сдвига усредняется и рассчитывается скорость воздушного объекта, по полученным оценкам времени приема сигналов выполняют пространственную локализацию воздушного объекта.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных воздушными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Известен способ пассивного обнаружения воздушных объектов [1], заключающийся в том, что выбирают передатчики, излучающие радиосигналы с расширенным спектром, синхронно принимают решеткой антенн многолучевые радиосигналы, включающие прямые радиосигналы передатчиков и рассеянные от объектов радиосигналы этих передатчиков, синхронно преобразуют ансамбль принятых антеннами радиосигналов в цифровые сигналы, из цифровых сигналов формируют прямые и сжатые рассеянные сигналы, сравнивают выделенные прямые и рассеянные сигналы и определяют временные задержки, доплеровские сдвиги и направления прихода рассеянных сигналов, по временным задержкам, доплеровским сдвигам и направлениям прихода выполняют обнаружение и пространственную локализацию воздушных объектов.

Недостатком данного способа является ограниченная дальность обнаружения воздушных объектов вследствие отсутствия операций компенсации когерентных помех, возникающих за счет просачивания прямого радиосигнала передатчика подсвета в канал приема рассеянных объектами радиосигналов.

Наиболее близким к заявляемому изобретению является способ пассивного обнаружения воздушных объектов [2], заключающийся в том, что когерентно принимают двумя пространственно совмещенными приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, из комплексных цифровых сигналов формируют сигнал, зависящий от временного и частотного сдвигов комплексной двухмерной взаимно корреляционной функции (ДВКФ), исключают центральную часть комплексной ДВКФ и получают сигнал модифицированной комплексной ДВКФ, из сигнала модифицированной комплексной ДВКФ и прямого комплексного цифрового сигнала формируют модифицированный рассеянный комплексный цифровой сигнал, формируют результирующий сигнал комплексной ДВКФ между модифицированным рассеянным комплексным цифровым сигналом и прямым комплексным цифровым сигналом, по модулю результирующего сигнала комплексной ДВКФ определяют число сжатых рассеянных сигналов, по параметрам которых - значению задержки по времени, абсолютного доплеровского сдвига каждого сжатого рассеянного сигнала, и значению азимутально-угломестного направления приема рассеянных сигналов выполняют обнаружение и пространственную локализацию воздушных объектов. Недостатком способа прототипа является ограничение зоны действия системы обнаружения, поскольку в способе прототипе, для приема рассеянного радиосигнала предусматривается использование антенной системы с узкой диаграммой направленности, которая наводится на заданное азимутально-угломерное направление приема, таким образом прием рассеянных воздушными объектами сигналов с других направлений будет затруднен. Также к недостаткам способа-прототипа можно отнести низкую точность оценки доплеровского сдвига частоты, в том случае, если совместно с сигналами, отраженными от воздушного объекта, антенной системой будут приниматься сигналы, отраженные от окружающих объектов индустрии, имеющих большую эффективную поверхность рассеяния (здания, мосты и др.), поскольку эти сигналы накладываются на сигналы, отраженные от воздушного объекта, и уменьшают точность оценки доплеровского сдвига частоты, а следовательно, и точность оценки скорости воздушного объекта.

Задача, на решение которой направлено предлагаемое техническое решение, - расширение зоны действия системы обнаружения воздушных объектов, а также повышение точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, при наличии мешающих сигналов, переотраженных от объектов индустрии.

Решение поставленной задачи достигается тем, что в способе пассивного обнаружения воздушных объектов, заключающегося в том, что когерентно принимают двумя приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, формируют сигнал, зависящий от временного и частотного сдвигов комплексной взаимно корреляционной функции, отличающемся тем, что прямые и рассеянные сигналы дополнительно принимаются двумя приемными каналами, при этом все четыре приемных канала пространственно разнесены, и в каждом из четырех приемных каналов используется широконаправленная антенная система, а в качестве сигнала подсвета используются широкополосные сигналы синхронизации, наземных систем связи, цифрового телевидения либо других источников, которые заранее известны, рассчитываются комплексные временные: взаимно корреляционная функции опорного сигнала и принятого сигнала подсвета, содержащего в себе прямой сигнал от передатчика, а также сигналы, отраженные от воздушного объекта, и сигналы, отраженные от окружающих приемные каналы объектов индустрии, в качестве опорного сигнала используется сигнал, совпадающий с сигналом подсвета, но не искаженный беспроводным каналом распространения радиоволн, по каждой из рассчитанных комплексных взаимно корреляционных функций производится оценка времени приема, частотного и фазового сдвигов, прямых сигналов, сигналов, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемный канал каждого из четырех приемных пунктов, зная полученные оценки, производится выделение сигналов, отраженных от воздушного объекта, и компенсация остальных сигналов, принятых в каждом из четырех приемных каналах, после чего производится повторная оценка фазового и частотного сдвига сигналов, отраженных от воздушного объекта, и принятого каждым из четырех приемных каналов, полученная оценка частотного сдвига усредняется и рассчитывается скорость воздушного объекта, по полученным оценкам времени приема сигналов выполняют пространственную локализацию воздушного объекта. Функциональная схема предлагаемого способа приведена на фиг.1, на которой обозначено: 1 - преобразование частоты, 2 - аналого-цифровое преобразование сигналов и формирование комплексных сигналов, 3 - вычисление комплексной временной взаимокорреляционной функции, 4 - формирование опорного сигнала, 5 - оценка временного, частотного и фазового сдвига, 6 - выделение сигналов, отраженных от воздушного объекта, 7 - компенсация «сигналов-помех», 8 - пространственная локализация объекта, оценка скорости воздушного объекта.

Подробное описание способа.

В основе способа пассивного обнаружения воздушных объектов лежит идея использования сторонних, широкополосных сигналов известных источников в качестве сигналов подсвета. Идея предлагаемого способа поясняется на фиг.2. Система обнаружения воздушных объектов включает четыре разнесенных в пространстве приемных пункта. В качестве сигнала подсвета может использоваться сигнал синхронизации, который известен и определяется стандартом, в соответствии с которым работает данная система. Для увеличения зоны действия системы обнаружения воздушных объектов, в каждом из четырех приемных пунктов устанавливаются антенны с широкой диаграммой направленности, при этом, для уменьшения влияния сигналов, отраженных от земли и объектов индустрии, антенны направляются преимущественно в сторону передатчика сигнала подсвета и в направлении от земной поверхности. В каждом из четырех приемных пунктов принимается смесь прямого сигнала с сигналами, отраженными от воздушного объекта и объектов индустрии. Принятые в каждом приемном пункте, зависящие от времени радиосигналы x1(t), x2(t), x3(t), x4(t) переносятся на более низкую частоту. После преобразования частоты, синхронно, в каждом приемном пункте производится аналого-цифровое преобразование сигналов x1(t), x2(t), x3(t), x4(t), выделение квадратур и формирование комплексных цифровых сигналов , , , . Далее производится вычисление четырех комплексных временных взаимокорреляционных функций (ВКФ) , , , , опорного сигнала, с каждым из четырех комплексных цифровых сигналов , , , . По полученным временным взаимокорреляционным функциям производится оценка времени приема , частотного и фазового сдвига, прямых, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемные каналы, i - номер приемного канала, N - количество принятых переотраженных сигналов, включая прямой сигнал. Оценка времени приема сигналов производится по положению максимумов рассчитанных ВКФ. Оценка частотного и фазового сдвига может быть произведена, например, при помощи способа, описанного в [3]. По полученным оценкам частотного сдвига выделяются сигналы, отраженные от воздушного объекта, поскольку сигналы, отраженные от объектов индустрии и земли, будут иметь минимальный частотный сдвиг (либо не будут иметь его). Для повышения точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, используя полученные оценки временного, частотного и фазового сдвига, в каждом из сигналов , , , , производится компенсация прямых сигналов от передатчика, а также сигналов, отраженных от объектов индустрии. После операции компенсации, производится повторная оценка частотного сдвига для сигналов, отраженных от воздушного объекта. Полученные для каждого приемного пункта оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, усредняются. Пространственная локализация воздушного объекта (определение координат) производится разностно-дальномерным методом, описанным, например, в [4], по разности моментов приема сигналов, отраженных от воздушного объекта в каждом приемном пункте.

Предлагаемый способ позволит расширить зону действия системы обнаружения воздушных объектов, по сравнению с системой, описанной в способе-прототипе, поскольку подразумевает применение антенн с широкой диаграммой направленности. Повышение точности оценки доплеровского сдвига частоты сигналов, отраженных от воздушного объекта, достигается за счет компенсации прямого сигнала передатчика, а также сигналов, отраженных от объектов индустрии, и может достигать 20% по сравнению со способом-прототипом.

1. Пат. РФ №2158002, МПК G01S 13/14. Способ радиоконтроля. Опубл. 20.10.2000.

2. Пат. РФ №2472176, МПК G01S 13/02. Способ пассивного обнаружения воздушных объектов. Опубл. 10.01.2013.

3. Пат. РФ №2459354 H04B 1/68, G01S 3/46. Способ оценки сдвига несущей частоты в восходящем канале для беспроводных телекоммуникационных систем. Опубл. 20.08.2012.

4. Черняк B.C. Многопозиционная радиолокация. - М.: Радио и связь, 1993. - 416 с.

Способ пассивного обнаружения воздушных объектов, заключающегося в том, что когерентно принимают двумя приемными каналами прямой радиосигнал от передатчика подсвета и рассеянный воздушным объектом радиосигнал, синхронно преобразуют принятые радиосигналы в комплексные цифровые сигналы, которые синхронно регистрируют на заданном временном интервале, формируют сигнал, зависящий от временного и частотного сдвигов комплексной взаимно корреляционной функции, отличающийся тем, что прямые и рассеянные сигналы дополнительно принимаются двумя приемными каналами, при этом все четыре приемных канала пространственно разнесены, и в каждом из четырех приемных каналов используется широконаправленная антенная система, а в качестве сигнала подсвета используются широкополосные сигналы синхронизации, наземных систем связи, цифрового телевидения либо других источников, которые заранее известны, рассчитываются комплексные временные взаимно корреляционная функции опорного сигнала и принятого сигнала подсвета, содержащего в себе прямой сигнал от передатчика, а также сигналы, отраженные от воздушного объекта, и сигналы, отраженные от окружающих приемные каналы объектов индустрии, в качестве опорного сигнала используется сигнал, совпадающий с сигналом подсвета, но не искаженный беспроводным каналом распространения радиоволн, по каждой из рассчитанных комплексных взаимно корреляционных функций производится оценка времени приема, частотного и фазового сдвигов, прямых сигналов, сигналов, отраженных от воздушного объекта, а также сигналов, отраженных от объектов индустрии и поступивших в приемный канал каждого из четырех приемных пунктов, зная полученные оценки, производится выделение сигналов, отраженных от воздушного объекта, и компенсация остальных сигналов, принятых в каждом из четырех приемных каналах, после чего производится повторная оценка фазового и частотного сдвига сигналов, отраженных от воздушного объекта, и принятого каждым из четырех приемных каналов, полученная оценка частотного сдвига усредняется и рассчитывается скорость воздушного объекта, по полученным оценкам времени приема сигналов выполняют пространственную локализацию воздушного объекта.
СПОСОБ ПАССИВНОГО ОБНАРУЖЕНИЯ ВОЗДУШНЫХ ОБЪЕКТОВ
СПОСОБ ПАССИВНОГО ОБНАРУЖЕНИЯ ВОЗДУШНЫХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 11-17 из 17.
10.04.2014
№216.012.b005

Тиристорный регулятор переменного напряжения

Изобретение относится к области электротехники и может быть использовано в качестве регулирующего органа стабилизаторов напряжения, к форме выходного напряжения которых предъявляются повышенные требования. Технический результат - повышение надежности и упрощение алгоритма управления....
Тип: Изобретение
Номер охранного документа: 0002510776
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.cc14

Способ повышения точности оценки разности моментов приема радиосигналов за счет использования особенностей канала распространения радиоволн

Изобретение относится к радиотехнике и может быть использовано при разработке систем для определения координат источника радиоизлучения (ИРИ), а также в пассивной радиолокации. Достигаемый технический результат - повышение точности оценки разности моментов приема сигналов источника...
Тип: Изобретение
Номер охранного документа: 0002518015
Дата охранного документа: 10.06.2014
27.08.2014
№216.012.f003

Пигмент на основе модифицированного порошка диоксида титана

Изобретение относится к пигменту для светоотражающих покрытий. Пигмент содержит смесь частиц диоксида титана микронных размеров с наночастицами диоксида циркония. Концентрацию наночастиц диоксида циркония выбирают в диапазоне от 0,5 до 5,0 мас.%. Смесь перемешивают с добавлением...
Тип: Изобретение
Номер охранного документа: 0002527262
Дата охранного документа: 27.08.2014
10.11.2014
№216.013.040c

Пигмент на основе смесей микро- и нанопорошков диоксида циркония

Изобретение может быть использовано в космической технике, строительстве, в химической, пищевой и легкой промышленности. Пигмент для светоотражающих покрытий содержит смесь частиц диоксида циркония со средним размером 3 мкм и наночастицы диоксида циркония размером 30-40 нм. Концентрация...
Тип: Изобретение
Номер охранного документа: 0002532434
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0912

Пигмент на основе смесей микро- и нанопорошков оксида алюминия

Изобретение относится к составам пигментов для белых красок и покрытий, в том числе для терморегулирующих покрытий космических аппаратов. Пигмент для светоотражающих покрытий содержит смесь частиц оксида алюминия микронных размеров с наночастицами оксида алюминия. Смесь перемешивают в магнитной...
Тип: Изобретение
Номер охранного документа: 0002533723
Дата охранного документа: 20.11.2014
27.04.2016
№216.015.3842

Способ оценки сдвига частоты для систем связи, использующих ofdm сигналы

Изобретение относится к радиотехнике, в частности к способам оценки частотного сдвига, и может быть использовано в аппаратуре беспроводных телекоммуникационных систем, использующих OFDM сигналы, а также в контрольно-измерительном оборудовании. Технический результат состоит в повышении точности...
Тип: Изобретение
Номер охранного документа: 0002582590
Дата охранного документа: 27.04.2016
20.01.2018
№218.016.0fb9

Устройство для проведения ремонтных работ на гидротехническом сооружении

Изобретение относится к области выполнения ремонта и прочих работ на гидротехнических сооружениях. Устройство для проведения ремонтных работ на гидротехническом сооружении содержит корпус 1 не менее чем с тремя закрытыми гранями и не менее чем с двумя смежными открытыми гранями, одна из которых...
Тип: Изобретение
Номер охранного документа: 0002633548
Дата охранного документа: 13.10.2017
Показаны записи 21-26 из 26.
10.07.2019
№219.017.b062

Физиотерапевтическая щетка

Изобретение относится к медицинской технике, а именно к устройствам для нормализации процессов в организме человека. Щетка содержит диэлектрическое основание, жестко связанную с ним ручку, закрепленный на основании эластичный элемент, имеющий выпуклую форму, который содержит отверстия для...
Тип: Изобретение
Номер охранного документа: 0002432192
Дата охранного документа: 27.10.2011
21.12.2019
№219.017.efc8

Способ получения трёхмерного изображения в радаре бокового обзора с синтезированием апертуры антенны

Изобретение относится к системам радиовидения и может быть использовано для получения трехмерного радиолокационного изображения объектов сцены при боковом обзоре с высокой разрешающей способностью как по дальности, так и по углу азимута, независимо от метеоусловий и уровня освещенности....
Тип: Изобретение
Номер охранного документа: 0002709623
Дата охранного документа: 19.12.2019
21.12.2019
№219.017.eff1

Способ динамического изменения ширины полосы захвата в радаре непрерывного излучения с синтезированием апертуры антенны

Изобретение относится к системам радиовидения и может быть использовано для динамического изменения ширины полосы захвата по дальности в радаре с синтезированием апертуры антенны. Технический результат заключается в получении возможности адаптивного изменения ширины полосы захвата по дальности...
Тип: Изобретение
Номер охранного документа: 0002709483
Дата охранного документа: 18.12.2019
21.12.2019
№219.017.f012

Способ получения трёхмерного изображения в радаре переднебокового обзора с синтезированием апертуры антенны

Изобретение относится к системам радиовидения и может быть использовано для получения трехмерного радиолокационного изображения объектов сцены при переднебоковом обзоре с высокой разрешающей способностью как по дальности, так и по углу азимута, независимо от метеоусловий и уровня освещенности....
Тип: Изобретение
Номер охранного документа: 0002709484
Дата охранного документа: 18.12.2019
23.05.2023
№223.018.6c64

Способ адаптивной модуляции для систем связи, использующих сигналы с ортогональным частотным мультиплексированием

Изобретение относится к радиотехнике, в частности к способам адаптивной модуляции, которое может быть использовано в беспроводных и проводных системах связи, использующих для передачи сигналы с ортогональным частотным мультиплексированием (OFDM). Технический результат заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002739940
Дата охранного документа: 30.12.2020
30.05.2023
№223.018.7295

Способ определения местоположения потерявшегося человека с мобильным устройством

Изобретение относится к способу определения местоположения потерявшегося человека с мобильным устройством. Для определения местоположения потерявшегося человека используют предварительно вычисленное определенным образом число N беспилотных летательных аппаратов (БПЛА), каждый из которых снабжен...
Тип: Изобретение
Номер охранного документа: 0002780071
Дата охранного документа: 19.09.2022
+ добавить свой РИД