×
20.02.2015
216.013.2a21

Результат интеллектуальной деятельности: ПРОТИВОТОЧНЫЙ РЕАКТОР С КИПЯЩИМ СЛОЕМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химическому машиностроению и может быть использовано в технологии восстановления оксидов урана, гидрофторирования в кипящем слое. Противоточный реактор с кипящим слоем содержит вертикальный обогреваемый корпус, состоящий из царг, разделенный на секции перфорированными пластинами, размещенный над корпусом узел загрузки исходного дисперсного материала, снабженный шнеком-дозатором, установленным под углом относительно линии горизонта, узел подачи реакционного газа, расположенный в нижней части реактора, бункер выгрузки продукта и сепаратор, включающий в себя оптически плотную конструкцию, возвращающую частицы исходного материала в корпус реактора. При этом перфорированные пластины выполнены в виде конусообразных перегородок с коаксиальным переточным отверстием и расположенными по образующей конуса перегородки отверстиями для прохода газа. Изобретение обеспечивает увеличение производительности и безопасности. 3 з.п. ф-лы, 3 ил.

Изобретение относится к химическому машиностроению и может быть использовано в технологии восстановления оксидов урана, гидрофторирования в кипящем слое.

Известен реактор кипящего слоя восстановления оксида урана водородом [Тураев Н.С., Жерин И.И. Химия и технология урана. - М.: Издательский дом «Руда и металлы», 2006, с.345-346], включающий две вертикальные трубы из нержавеющей стали с нагревательными элементами и теплоизоляцией, смонтированные рядом, патрубок подачи газа, бункер исходного сырья, шнековый питатель с мотором-редуктором, циклон, сборник готового продукта. Порошок из бункера исходного сырья вводят сбоку в первую трубу шнековым питателем. Частично восстановленный продукт из первой трубы «переливается» во вторую, где реакция заканчивается. Водород подается параллельно в обе трубы (иногда он разбавляется азотом). Из второй трубы порошок отводится по трубе в циклон, где отделяется от газовой фазы и поступает в бункер-сборник готового продукта. После дополнительной пылеочистки отходящий газ направляется на сжигание.

Восстановление в двух трубах предохраняет от прохода газа мимо восстанавливаемого материала и соответствующего снижения времени их взаимодействия.

Недостатки данного реактора:

- подсоединение шнекового дозатора под прямым углом к реакторной колонне способствует поступлению водорода в бункер и созданию водородного мешка вверху бункера, при этом порошок может под собственной тяжестью самопроизвольно ссыпаться в реакторную колонну;

- отсутствие регулирующих устройств усложняет процесс регулировки подачи газа и порошка для создания псевдоожиженного слоя и делает процесс восстановления трудно контролируемым и непредсказуемым;

- наличие тупиковых пространств колонн способствует скоплению водорода вверху колонн и требует водяного охлаждения колонн и периодических продувок инертными газами;

- интенсивное перемешивание твердых частиц и равенство их концентраций в объеме псевдоожиженного слоя обуславливают определенную потерю движущей силы взаимодействующих фаз и возрастающую неоднородность обработки твердых частиц.

Последний недостаток устранен в многосекционных аппаратах с перетеканием сыпучего материала с одной секции на другую. Например, в противоточном аппарате непрерывного действия [Плановский А.Н., Николаев П.И. Процессы и аппараты химической и нефтехимической технологии: Учебник для вузов. - 3-е изд., перераб. и доп. - М.: Химия, 1987, с.106-107] применено последовательное секционирование с получением каскада последовательно расположенных псвдоожиженных слоев. В результате твердая фаза переходит с верхних слоев на нижние под действием силы тяжести через специальные переточные устройства. Вследствие сужения в секционированном аппарате спектра распределения времен пребывания твердых частиц и уменьшения интенсивности перемешивания достигается их более равномерная обработка, что важно во многих процессах (например, при восстановлении металлов из оксидов). Однако данная конструкция не устраняет застойные зоны дисперсного материала в секциях. Также в данной конструкции отсутствует процесс регулировки подачи газа и порошка для создания псевдоожиженного слоя.

Проблема регулировки подачи газа и порошка частично решается в устройстве [Процессы и аппараты химической технологии. Явления переноса, макрокинетика, подобие, моделирование, проектирование: В 5 т., т.2. Механические и гидромеханические процессы / Д.А. Баранов, В.Н. Блиничев, А.В. Вязьмин и др.; под ред. А.М. Кутепова. - М.: Логос, 2002, с.560-561], включающем газораспределительную решетку с наклоном к горизонту под углом, близким к углу естественного откоса дисперсного материала. Самотечное движение восстанавливаемого порошка и отсутствие его регулировки подачи способствует скоплению порошка в первой ячейке решетки и его неравномерному распределению по ней. Неравномерное распределение потока газа по поперечному сечению решетки сопровождается его неравномерным воздействием на восстанавливаемый материал, что существенно влияет на выход конечного продукта. Также к недостаткам устройства можно отнести образование взрывоопасных объемов газа в бункере подачи порошка и унос порошка за пределы реактора восстановления из-за отсутствия устройств, препятствующих этому.

Прототипом предлагаемого устройства является реактор с кипящим слоем [Ч. Харрингтон, А. Рюэле. Технология производства урана. М., 1961, с.216-217, 250-251]. Реактор содержит три ступени кипящего слоя, поддерживаемые каждая перфорированной пластиной с отверстиями. Спускные трубы выступают над перфорированными пластинами. Перед входом в реактор реакционный газ подогревается и, двигаясь вверх через ступени кипящего слоя, попадает в отделение фильтрования, где два пористых металлических фильтра отделяют увлеченные потоком частицы пыли. Дисперсный материал вводится сверху установки и переводится во взвешенное состояние движущимся вверх газовым потоком. Смесь твердого вещества и газа ведет себя в таком состоянии как жидкость и с прибавлением твердой фазы перетекает через отводную трубу из одной ступени в следующую и собирается в бункере внизу. Каждая ступень реактора обогревается электронагревателем, расположенным вокруг внешней стенки. Реактор применялся для получения UO2 из UO3 и UF4 из UO2.

Недостатки данного реактора:

- наличие застойных зон в каждой ступени, сопровождающееся сводообразованием и возможным спеканием продукта в реакторе;

- частицы пыли, увлекаемые отработанным реакционным газом, оседают на фильтрах, снижая их пропускную способность, и требуют периодической остановки процесса восстановления и продувку фильтров противоточным инертным газом;

- неконтролируемое самоссыпание восстанавливаемого порошка из бункера подачи порошка;

- возможно образование взрывоопасных объемов реакционного газа в бункере подачи порошка.

Задачей данного изобретения является увеличение производительности и безопасности противоточного реактора с кипящим слоем вследствие предотвращения образования взрывоопасных объемов газа в замкнутых пространствах и застойных зон в секциях, возвращения конечного продукта в процесс в результате предотвращения его уноса из реактора и обеспечения тем самым непрерывности процесса.

Поставленная задача решается тем, что в противоточном реакторе с кипящим слоем, содержащем вертикальный обогреваемый корпус, разделенный на секции перфорированными пластинами, размещенный над корпусом узел загрузки исходного дисперсного материала, узел подачи газа, расположенный в нижней части реактора, бункер выгрузки продукта, узел загрузки исходного дисперсного материала снабжен шнеком-дозатором, установленным под углом относительно линии горизонта, перфорированные пластины выполнены в виде конусообразных перегородок с коаксиальным переточным отверстием и расположенными по образующей конуса перегородки отверстиями для прохода газа, а корпус, состоящий из царг, содержит также сепаратор, включающий в себя оптически плотную конструкцию, возвращающую частицы исходного материала в корпус реактора.

Шнек-дозатор установлен под углом к горизонту, превышающим угол трения исходного дисперсного материала.

Угол конуса перегородки превышает угол естественного откоса исходного дисперсного материала.

Отношение диаметра центрального переточного отверстия к внутреннему диаметру царг определяется по формуле:

где d - диаметр переточного отверстия, мм;

D - внутренний диаметр царги, мм;

ρисходного материала - плотность исходного дисперсного материала, г/см3;

ρнасыпная - насыпная плотность исходного дисперсного материала, г/см3;

α - угол естественного откоса исходного дисперсного материала, градусы;

φ - угол трения исходного дисперсного материала, градусы;

Qгаза - часовой расход реакционного газа, кг/час;

Qпорошка - часовой расход исходного дисперсного материала, кг/час;

ϑисходного порошка - скорость исходного дисперсного материала на границе царга-сепаратор, м/с;

ϑгаза - скорость подаваемого реакционного газа, м/с.

Площадь отверстий для прохода газа равна площади переточного отверстия.

На фиг.1 представлен общий вид противоточного реактора с кипящим слоем; на фиг.2 - сепаратор; на фиг.3 - упрощенное изображение конусообразной перегородки с коаксиальным переточным отверстием и расположенными по образующей конуса перегородки отверстиями для прохода газа, главный вид и вид сверху.

Реактор с кипящим слоем содержит узел загрузки 1 исходного материала, вертикальный корпус 2, бункер 3 выгрузки продукта.

Узел загрузки 1 состоит из бункера 4 исходного материала, шнека-дозатора 5 с мотор-редуктором 6, патрубка 7, служащего для соединения бункера 4 исходного материала со шнеком-дозатором 5, патрубка 8, служащего для соединения шнека-дозатора 5 с вертикальным корпусом 2.

Узел загрузки 1 предназначен для подачи исходного материала в реактор при помощи шнека-дозатора 5. Шнек-дозатор 5 установлен под углом 15° относительно линии горизонта (в общем случае данный угол должен превышать угол трения исходного материала) для исключения попадания газовой фазы в узел загрузки 1 и самопроизвольного ссыпания порошка в вертикальный корпус 2.

Вертикальный корпус 2 включает сепаратор 9, обогреваемые царги 10 и узел подачи газа 11.

Сепаратор 9 (см. фиг.2) выполнен в виде цилиндра, в нижней части переходящего в форму усеченного конуса с фланцем для подсоединения царги 10, расположенной вверху корпуса 2. Сепаратор 9 имеет крышку 12 с газоотводящим патрубком 13. Внутри сепаратор 9 делится на два сектора: сектор 14, через который происходит подача исходного материала из шнека-дозатора 5 в вертикальный корпус 2, и сектор 15 для отвода реакционных газов через газоотводящий патрубок 13. Сектор 15 снабжен оптически плотной конструкцией 16, исключающей унос из реактора частиц исходного материала и возвращающей их в процесс восстановления.

Вертикальный корпус 2 реактора с кипящим слоем в конкретном исполнении (см. фиг.1) состоит из трех царг. Каждая царга 10 имеет цилиндрическую форму. С обеих сторон царга 10 заканчивается фланцами, позволяющими подсоединить одну царгу к другой. Обогрев царг электрический.

Внутри каждой царги 10 установлена конусообразная перегородка 17 (см. фиг.3) с коаксиальным переточным отверстием 18 и расположенными по образующей конуса перегородки отверстиями 19 для прохода газа, позволяющими удерживать порошок в реакторе во взвешенном слое. Угол конусообразной перегородки 17 в конкретном исполнении составляет 45° (угол, превышающий угол естественного откоса, в общем случае).

Диаметр переточного отверстия 18 определяется по формуле:

где d - диаметр переточного отверстия 18, мм;

D - внутренний диаметр царги 10, мм;

ρисходного материала - плотность исходного дисперсного материала, г/см3;

ρнасыпная - насыпная плотность исходного дисперсного материала, г/см3;

α - угол естественного откоса исходного дисперсного материала, градусы;

φ - угол трения исходного дисперсного материала, градусы;

Qгаза - часовой расход реакционного газа, кг/час;

Qпорошка - часовой расход исходного дисперсного материала, кг/час;

ϑисходного порошка - скорость исходного дисперсного материала на границе царга 10 - сепаратор 9, м/с;

ϑгаза - скорость подаваемого реакционного газа, м/с.

Площадь отверстий 19 для прохода реакционного газа равна площади переточного отверстия 18.

Между нижней царгой 10 и бункером 3 выгрузки продукта расположен узел подачи газа 11, обеспечивающий подачу предварительно нагретого реакционного газа в корпус 2.

Устройство работает следующим образом.

Из бункера 4 исходного материала при помощи шнека-дозатора 5 исходный дисперсный материал подается в вертикальный корпус 2. В нижнюю часть вертикального корпуса 2 через узел подачи газа 11 подается предварительно нагретый реакционный газ (азото-водородная смесь, либо водород, либо фтористый водород). Включается электрический обогрев царг 10.

В создающемся на каждой конусообразной перегородке 17 псевдоожиженном слое более легкий конечный продукт отбрасывается к стенке царги 10 и, двигаясь по конусу перегородки 17, ссыпается вниз через переточное отверстие 18, а перегретый газ, полученный при реакции, устремляется вверх, дополнительно перемешивая взвешенный слой.

Конусообразная перегородка 17 с углом, превышающим угол естественного откоса порошка, препятствует сводообразованию получаемого продукта и способствует его равномерному движению. Получаемый продукт, находясь во взвешенном состоянии, движется вниз по вертикальному корпусу 2 и ссыпается в бункер 3 выгрузки продукта. При этом процесс взаимодействия продолжается. Перегретый газ, пройдя через оптически плотную конструкцию 16, направляется через газоотводящий патрубок 13 на охладитель-конденсатор (не показан). При этом за счет изменения направления движения газ отделяется от случайно захваченных частиц исходного материала, которые отбрасываются к стенкам сепаратора 9, теряют скорость и возвращаются в процесс.

Шнек-дозатор 5, установленный под углом к горизонту, превышающим угол трения исходного дисперсного материала, препятствует попаданию реакционного газа в узел загрузки 1 исходного материала и образованию взрывоопасных объемов газа в замкнутых пространствах, при этом исходный дисперсный материал поджимается к шнеку-дозатору 5 и исключается его самопроизвольное ссыпание в сепаратор 9.

Таким образом, данная конструкция, препятствует образованию взрывоопасных объемов газа в замкнутых пространствах и застойных зон в секциях, способствует предотвращению уноса конечного продукта, возвращению продукта в процесс и обеспечивает непрерывность процесса, тем самым увеличивая производительность и безопасность противоточного реактора с кипящим слоем.


ПРОТИВОТОЧНЫЙ РЕАКТОР С КИПЯЩИМ СЛОЕМ
ПРОТИВОТОЧНЫЙ РЕАКТОР С КИПЯЩИМ СЛОЕМ
ПРОТИВОТОЧНЫЙ РЕАКТОР С КИПЯЩИМ СЛОЕМ
ПРОТИВОТОЧНЫЙ РЕАКТОР С КИПЯЩИМ СЛОЕМ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 33.
20.01.2013
№216.012.1c2f

Способ приготовления порошка диоксида урана

Изобретение относится к технологии производства ядерного топлива для энергетических реакторов, в частности, к процессам получения порошков диоксида урана для изготовления сердечников твэлов. Способ приготовления порошка двуокиси урана, содержащего выгорающий поглотитель, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002472709
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1c30

Способ очистки гексафторида урана

Изобретение относится к технологии очистки гексафторида урана от легколетучих примесей и может быть использовано для улучшения качества и снижения себестоимости продукции газоразделительных производств. Способ очистки гексафторида урана от легколетучих примесей включает переведение гексафторида...
Тип: Изобретение
Номер охранного документа: 0002472710
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1c31

Способ растворения кремнийсодержащей пульпы

Изобретение относится к области переработки и обезвреживания высокоактивных пульп и может быть использовано на радиохимических производствах. Способ растворения кремнийсодержащей пульпы включает растворение кремниевой кислоты в растворе щелочи, причем к пульпе приливают раствор натриевой щелочи...
Тип: Изобретение
Номер охранного документа: 0002472711
Дата охранного документа: 20.01.2013
10.06.2013
№216.012.47f3

Бункер-питатель со шнековой выгрузкой для порошков, склонных к сводообразованию

Изобретение относится к технологии хранения и дозированной подачи порошкообразных материалов, склонных к сводообразованию и каналообразованию в бункерах-дозаторах со шнековой выгрузкой. Устройство содержит корпус с патрубком загрузки и патрубком выгрузки. Внутри корпуса размещено подвижное...
Тип: Изобретение
Номер охранного документа: 0002483999
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4808

Способ получения тетрафторида урана

Изобретение относится к способам получения тетрафторида урана, а именно к способам получения тетрафторида урана на переделе гидрофторирования диоксида урана, и может быть использовано в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана включает...
Тип: Изобретение
Номер охранного документа: 0002484020
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.5146

Опора химического аппарата

Опора химического аппарата содержит основание и две косынки, прикрепленные через подкладной лист к коническому днищу аппарата. В верхней части опоры выполнена теплообменная рубашка, ограниченная сверху подкладным листом, снизу - нижним листом, а с боков - стойками и боковыми пластинами,...
Тип: Изобретение
Номер охранного документа: 0002486399
Дата охранного документа: 27.06.2013
20.08.2013
№216.012.5f91

Цанговый патрон

Цанговый патрон для зажима деталей содержит корпус с внутренней конической поверхностью, установленный в корпусе зажимной элемент, выполненный в виде цанги с наружной рабочей конической поверхностью, и механизм перемещения, для расширения технологических возможностей зажимной элемент снабжен...
Тип: Изобретение
Номер охранного документа: 0002490097
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.608c

Способ переработки химического концентрата природного урана

Изобретение относится к технологии переработки химических концентратов природного урана (ХКПУ), включающей выщелачивание (растворение) концентрата и экстракцию урана с использованием трибутилфосфата (ТБФ) в углеводородном разбавителе. Способ включает растворение концентрата с использованием...
Тип: Изобретение
Номер охранного документа: 0002490348
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6a78

Способ увеличения проницаемости фильтрующего элемента

Изобретение относится к технологии фильтрации технологических сред с трубчатыми фильтрующими элементами, имеющими внутренний тонкопористый слой, закрепленный на внешнем грубопористом слое, применяемыми для очистки газов и разделения газовых смесей. Способ заключается в том, что пропускают поток...
Тип: Изобретение
Номер охранного документа: 0002492907
Дата охранного документа: 20.09.2013
27.10.2013
№216.012.7a04

Способ переработки химического концентрата природного урана

Изобретение относится к способам переработки химических концентратов природного урана (ХКПУ), имеющих повышенное содержание примесей серы и железа, а также, возможно, фосфора. Способ включает растворение ХКПУ в растворе азотной кислоты, экстракцию и реэкстракцию урана. Растворению подвергают...
Тип: Изобретение
Номер охранного документа: 0002496898
Дата охранного документа: 27.10.2013
Показаны записи 1-10 из 40.
20.01.2013
№216.012.1c2b

Способ получения синтетического флюорита

Изобретение может быть использовано в химической промышленности при переработке отходов фтороводородной кислоты. Для получения синтетического флюорита сульфат кальция добавляют к раствору фтороводорода, взятого в 20-35% избытке, при нагревании и перемешивании. Затем отделяют осадок от маточного...
Тип: Изобретение
Номер охранного документа: 0002472705
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1c2f

Способ приготовления порошка диоксида урана

Изобретение относится к технологии производства ядерного топлива для энергетических реакторов, в частности, к процессам получения порошков диоксида урана для изготовления сердечников твэлов. Способ приготовления порошка двуокиси урана, содержащего выгорающий поглотитель, включает разложение...
Тип: Изобретение
Номер охранного документа: 0002472709
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1c30

Способ очистки гексафторида урана

Изобретение относится к технологии очистки гексафторида урана от легколетучих примесей и может быть использовано для улучшения качества и снижения себестоимости продукции газоразделительных производств. Способ очистки гексафторида урана от легколетучих примесей включает переведение гексафторида...
Тип: Изобретение
Номер охранного документа: 0002472710
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1c31

Способ растворения кремнийсодержащей пульпы

Изобретение относится к области переработки и обезвреживания высокоактивных пульп и может быть использовано на радиохимических производствах. Способ растворения кремнийсодержащей пульпы включает растворение кремниевой кислоты в растворе щелочи, причем к пульпе приливают раствор натриевой щелочи...
Тип: Изобретение
Номер охранного документа: 0002472711
Дата охранного документа: 20.01.2013
27.02.2013
№216.012.29f0

Плазмохимический реактор

Изобретение относится к области химического машиностроения, а именно к плазмохимическим реакторам, и может быть использовано при получении тонкодисперсных материалов. Реактор включает реакционную камеру, канал ввода в верхнюю часть реакционной камеры плазменного теплоносителя, генерированного в...
Тип: Изобретение
Номер охранного документа: 0002476263
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e63

Предохранительное устройство

Изобретение относится к арматуростроению и предназначено в качестве предохранительного устройства для защиты аппаратов, работающих под давлением. Предохранительное устройство содержит обратновыгибаемую мембрану и режущий элемент с кольцевой режущей кромкой. Режущий элемент представляет собой...
Тип: Изобретение
Номер охранного документа: 0002477406
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2fbf

Способ извлечения америция

Изобретение относится к способам извлечения америция в виде диоксида америция из растворов. Изобретение может быть использовано в технологии извлечения америция из оборотов производства и радиоактивных отходов. Способ включает концентрирование азотнокислого раствора, содержащего америций и...
Тип: Изобретение
Номер охранного документа: 0002477758
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.3671

Способ очистки гексафторида урана от фторидов рутения

Изобретение относится к технологии рециклирования ядерных энергетических материалов, а именно к способам очистки гексафторида урана от фторидов рутения, и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива, в топливный цикл легководных реакторов. Способ...
Тип: Изобретение
Номер охранного документа: 0002479490
Дата охранного документа: 20.04.2013
10.06.2013
№216.012.47f3

Бункер-питатель со шнековой выгрузкой для порошков, склонных к сводообразованию

Изобретение относится к технологии хранения и дозированной подачи порошкообразных материалов, склонных к сводообразованию и каналообразованию в бункерах-дозаторах со шнековой выгрузкой. Устройство содержит корпус с патрубком загрузки и патрубком выгрузки. Внутри корпуса размещено подвижное...
Тип: Изобретение
Номер охранного документа: 0002483999
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4808

Способ получения тетрафторида урана

Изобретение относится к способам получения тетрафторида урана, а именно к способам получения тетрафторида урана на переделе гидрофторирования диоксида урана, и может быть использовано в производстве гексафторида урана или металлического урана. Способ получения тетрафторида урана включает...
Тип: Изобретение
Номер охранного документа: 0002484020
Дата охранного документа: 10.06.2013
+ добавить свой РИД