×
20.02.2015
216.013.2803

СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для определения концентрации примесей в монокристалле. Сущность изобретения заключается в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла в данной точке. Измерение величины межплоскостного расстояния исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, по всем измеренным точкам исследуемого кристалла, вычисляют среднее значение межплоскостного расстояния исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения. Технический результат: обеспечение возможности получения многомерной картины распределения примесей. 2 ил.
Основные результаты: Способ определения концентрации примесей в монокристалле, основанный на измерении относительного изменения межплоскостных расстоянии исследуемого кристалла относительно эталонного и заключающийся в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения, по которому определяют концентрацию примеси в измеренной точке, отличающийся тем, что исследуемый кристалл сканируют перпендикулярно относительно узкого пучка нейтронов, измерение величины исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, вычисляют среднее значение по всем измеренным точкам исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения по формуле , где n - средняя концентрация примеси в исследуемом кристалле;n - концентрация примеси в измеряемой точке; , где m - число точек сканирования;k - коэффициент влияния конкретной примеси на межплоскостное расстояние, справочная величина.
Реферат Свернуть Развернуть

Изобретение относится к области исследований кристаллической структуры монокристаллов. Одной из важных задач такого исследования является, в частности, изучение влияния легирующих примесей, которые внедряются в кристаллическую решетку при выращивании искусственных кристаллов с заданными свойствами. В настоящее время особое внимание при этом уделяется монокристаллам кремния и германия, которые являются основой элементной базы информационных устройств. Введение примесей в кристаллическую решетку монокристалла приводит к изменению постоянных решетки и, следовательно, к изменению межплоскостных расстояний кристаллографических плоскостей. Такое изменение в зависимости от концентрации примесей описывается выражением

,

где d - межплоскостное расстояние системы кристаллографических плоскостей,

nim - концентрация примесей [см-3],

kim - коэффициент влияния конкретной примеси на межплоскостное расстояние.

Таким образом, определение концентрации примесей nim при известном значении kim сводится к измерению относительного изменения межплоскостных расстояний исследуемых монокристаллов. С другой стороны, как следует из соотношения (1), изменение при известных значениях концентрации nim позволяет определить коэффициент влияния kim.

Следует отметить, что в обоих указанных случаях экспериментально определяется величина . Измерение преимущественно проводится с помощью двух-трех кристальных рентгеновских (реже нейтронных) спектрометров.

Так, в работе G. Celotti, D. Nobili, P. Ostoja, Journal of materials science 9 (1974) 821-828 [1] для ряда кристаллов кремния измерена величина постоянной решетки при различных концентрациях примесных атомов бора и фосфора. Измерения проводились с помощью двухкристального рентгеновского спектрометра. В качестве источника использовалось рентгеновское излучение. Постоянная решетки кристаллов с примесями, которая однозначно связана с межплоскостным расстоянием кристаллографических плоскостей, определялась по изменению углов дифракции этих кристаллов по сравнению с углом дифракции для эталонного (свободного от примесей) кристалла. В этой работе приведены также значения коэффициентов влияния kim для атомов бора и фосфора.

В работе J.A. Baker, T.N. Tucker, N.E. Moyer, R.C. Buschert, Journal of applied physics 39 9 (1968) 4365-4368 [2] описан способ определения относительного изменения межплоскостных расстояний кремния при внедрении в кристаллическую решетку примесных атомов углерода. В этой работе на трехкристальном рентгеновском спектрометре измерена зависимость кремния (плоскости (111)) от концентрации примеси углерода. Получено значение kim=-6,5ּ10-24. С другой стороны, если известна величина и значение kim, можно определить концентрацию примеси углерода, т.е. указанная зависимость может служить калибровочной для определения концентрации примеси (формула 1).

Известны также способы исследования кристаллической структуры монокристаллов путем определения относительного изменения межплоскостных расстояний, основанные на методе рентгеновской интерферометрии, который позволяет измерять с точностью 10-7÷10-8. A.C. SU 1249415 A1 [3].

Общим недостатком указанных способов является то, что они не дают информации о распределении примесей в кристалле. Недостатком является также чрезвычайно сложная методика приготовления образцов (необходимость точной ориентации кристаллографических плоскостей относительно поверхности образца, травление поверхности и т.п.). Кроме этого, требуется высокая точность (доли угловой секунды) измерения углов дифракции. При интерферометрических измерениях предъявляются высокие требования к качеству (мозаичности) кристаллов. Кроме того, размер тестируемой области (толщина образца) весьма ограничен из-за большого поглощения рентгеновского излучения.

В настоящее время наиболее точными прямыми способами определения концентрации примесей в полупроводниковых кристаллах являются измерения их электропроводности: Handbook of Semiconductor Silicon Technology, Park Ridge, New Jerssy, U.S.A. (1990) 395 [4], а также применение для определения концентрации примесей масс-спектрометров Р. Джейрам, Масс-спектрометрия. Теория и приложения, пер. с англ., M., 1969 [5]. Но эти способы также не дают полной информации о степени легирования кристаллов примесями, т.к. при их использовании измеряются интегральные (средние) значения характеристик. Кроме того, анализ в ряде случаев связан с разрушением проб.

Наиболее близким к заявляемому по технической сущности является определение концентрации примесей в кристаллах по патенту на изобретение РФ №2394228 [6]: «Способ определения относительного изменения межплоскостных расстояний совершенных кристаллов», который посвящен определению совершенства монокристаллов. Степень совершенства монокристаллов определяется количеством нарушений кристаллической решетки, которые могут быть связаны, в частности, с наличием примесей в кристаллах. Нарушения кристаллической решетки, связанные с введением примесей в монокристалл, приводят к изменению межплоскостных расстояний кристаллографических плоскостей. Такое изменение в зависимости от концентрации примесей описывается формулой 1.

Суть способа заключается в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения.

Этот способ позволяет проводить объемные исследования кристаллов размерами до нескольких десятков сантиметров произвольной формы и огранки и не требует специальной предварительной подготовки образца.

Способ заключается в следующем: пучок нейтронов направляют на эталонный монокристалл (анализатор) под углом Брэгга 90°. Для регистрации отраженного от эталонного кристалла пучка используют отражение от кристалла пиролитического графита, коэффициент отражения которого ~50%. Нейтроны, отраженные от пиролитического графита, регистрируются детектором. В пучок помещают исследуемый монокристалл (образец). Поворотом исследуемого кристалла добиваются одновременного выполнения условия Брэгга при θB=90° для обоих кристаллов для пучка нейтронов, отраженных от кристаллографических плоскостей эталонного и исследуемого монокристаллов с межплоскостными расстояниями d0 и d соответственно. При этом исследуемый кристалл экранирует нейтроны, которые могли бы отразиться от эталонного кристалла, и интенсивность отражения падает. Минимальная интенсивность при параллельном расположении кристаллографических плоскостей образца и анализатора будет наблюдаться при равенстве межплоскостных расстояний d0=d. Если эти расстояния отличаются, то минимума интенсивности можно достичь, изменяя межплоскостное расстояние d0 эталонного монокристалла (анализатора), изменив его температуру от исходного значения T0 до T0+ΔT таким образом, чтобы . Указанная разность температур ΔT исследуемого образца и анализатора связана с относительным изменением межплоскостного расстояния соотношением , где ξ - коэффициент теплового расширения кристалла-анализатора (эталона). Измерив разность ΔT в минимуме кривой отражения анализатора, можно определить . Данные о концентрации примеси в кристалле в одной измеренной точке можно получить, используя формулу 1.

Однако, несмотря на высокую точность определения (~10-7), а значит, и концентрации примеси, указанный способ не дает информации о распределении концентрации примесей в исследуемом кристалле.

При введении легирующих примесей в кристалл большое влияние на их физические свойства оказывает неоднородность внедрения примесей. Особенно это важно при использовании кристаллов больших размеров, так как возможная неоднородность внедрения примесей может привести к существенному различию характеристик устройств, создающихся на их основе или использующих части этих кристаллов в качестве отдельных элементов.

Поэтому исследование пространственного распределения концентраций этих примесей представляется весьма актуальной задачей, которая и является предметом предлагаемого изобретения.

Поставленная задача решается таким образом, что в известном способе определения концентрации примесей в монокристалле, основанном на измерении относительного изменения межплоскостных расстояний исследуемого кристалла относительно эталонного и заключающемся в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения, по которому судят о концентрации примеси в измеренной точке, новым является то, что исследуемый кристалл перемещают (сканируют) перпендикулярно относительно узкого пучка нейтронов, измерение величины исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, вычисляют среднее значение по всем измеренным точкам исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения по формуле

где n0 - средняя концентрация примеси в исследуемом кристалле;

n - концентрация примеси в измеряемой точке;

,

где m - число точек сканирования;

kim - коэффициент влияния конкретной примеси на межплоскостное расстояние (справочная величина).

Реализация способа и принципиальная схема спектрометра обратного рассеяния показана на фиг.1, где 1 - коллимированный пучок нейтронов, 2 - эталонный монокристалл, 3 - детектирующий кристалл, 4 - детектор, 5 - исследуемый монокристалл.

На фиг.2 представлены результаты проведенного сканирования образца кремния, легированного бором. Левая ось - изменение концентрации бора n0-n в различных точках исследуемого образца монокристалла кремния, правая ось - относительное изменение межплоскостного расстояния вследствие легирования.

Способ заключатся в следующем: коллимированный пучок нейтронов 1 направляют на эталонный монокристалл (анализатор) 2 под углом Брэгга 90°. Для регистрации отраженного от анализатора пучка используется отражение от кристалла пиролитического графита 3, коэффициент отражения которого ~50%. Нейтроны, отраженные от пиролитического графита, регистрируются детектором 4. В пучок 1 помещают исследуемый монокристалл (образец) 5. Поворотом кристалла 5 добиваются одновременного выполнения условия Брэгга при θB=90° для обоих кристаллов для пучка нейтронов, отраженных от кристаллографических плоскостей эталонного и исследуемого монокристаллов с межплоскостными расстояниями d0 и d соответственно. При этом исследуемый кристалл экранирует нейтроны, которые могли бы отразиться от эталонного кристалла, и, следовательно, интенсивность отражения падает. Минимальная интенсивность при параллельном расположении кристаллографических плоскостей образца и анализатора будет наблюдаться при равенстве межплоскостных расстояний d0=d. Если эти расстояния отличаются, то минимума интенсивности можно достичь, изменяя межплоскостное расстояние d0 эталона, изменив его температуру от исходного значения T0 до T0+ΔT таким образом, чтобы . Указанная разность температур ΔT: образца и эталона связана с относительным изменением межплоскостного расстояния соотношением , где ξ - коэффициент теплового расширения кристалла-эталона. Измеряя разность ΔT в минимуме кривой отражения эталонного кристалла, определяют . Перемещая образец с помощью сканирующего устройства в следующее положение, указанное измерение повторяют для этой следующей точки. Проведя сканирование подобным образом для «m» точек исследуемого кристалла, получают дифференциальное распределение для всей измеряемой области исследуемого образца.

Значения коэффициентов влияния конкретной примеси на межплоскостное расстояние kim берутся из справочной литературы. Например, значения kim для бора и фосфора приведены в работе [1].

Пример конкретной реализации.

Описанным способом в Петербургском институте ядерной физики было проведено исследование изменения распределения концентрации примеси бора в монокристалле кремния ⌀100 мм, длиной 140 мм. Это полупроводник p-типа с электросопротивлением ρ=6ּ10-2 Ом см, что соответствует средней примеси бора n0B=1018 см-3 [4]; kim=-4,8·10-24 [1]. Представленный кристалл был использован в качестве образца в нейтронном спектрометре обратного рассеяния; анализатором (эталоном) служил монокристалл кремния, свободный от примесей. Перемещая исследуемый образец с помощью сканирующего устройства, измерялись значения в десяти точках (m=10). При отражении нейтронов использовался рефлекс (220) d=1,92 Å, размер сканирующего пучка 5×50 мм2, шаг сканирования - 10 мм. Результаты проведенного сканирования представлены на фиг.2. Левая ось - изменение концентрации бора n0-n в различных точках исследуемого образца монокристалла кремния, правая ось - относительное изменение межплоскостного расстояния вследствие легирования. Видно, что концентрация бора в представленном образце существенно отличается для различных точек. В середине кристалла она меньше средней, а к краям - больше. Абсолютная разность величин концентраций ~4ּ1017 см-3 или ±20% относительно среднего значения n0≈1,2ּ1018 см-3, соответствующего , которое хорошо согласуется с ранее указанной величиной n0, полученной из измерения электросопротивления образца.

Важность учета величины изменения концентраций примесей зависит от конкретного применения используемого кристалла, и поэтому диагностика таких изменений представляется необходимой. Более того, учитывая симметрию кристаллов, можно представленным способом получить многомерную картину распределения примесей. Кроме этого, следует отметить, что указанный способ является еще одним неразрушающим способом определения концентраций примесей и их изменений в кристаллах больших размеров.

Литература

1. G. Celotti, D. Nobili, P. Ostoja, Lattice parameter study of siliconuniformly doped with boron and phosphorus, Journal of materials science 9 (1974) 821-828.

2. J.A. Baker, T.N. Tucker, N.E. Moyer, R.C. Buschert, Effect of Carbon on the LatticeParameter of Silicon, Journal of applied physics 39 9 (1968) 4365-4368.

3. Авторское свидетельство СССР SU 1249415.

4. Handbook of Semiconductor Silicon Technology, Park Ridge, New Jerssy, U.S.A. (1990) 395.

5. P. Джейрам, Масс-спектрометрия. Теория и приложения, пер. с англ., М., 1969.

6. Патент РФ на изобретение №2394228 «Способ определения относительного изменения межплоскостных расстояний совершенных кристаллов», 2010, прототип.

Способ определения концентрации примесей в монокристалле, основанный на измерении относительного изменения межплоскостных расстоянии исследуемого кристалла относительно эталонного и заключающийся в том, что в нейтронном спектрометре обратного рассеяния изменяют температуру эталонного кристалла до момента, когда межплоскостное расстояние эталонного кристалла совпадет с межплоскостным расстоянием исследуемого кристалла, и вычисляют относительное изменение межплоскостного расстояния исследуемого кристалла по формуле , где ξ - коэффициент теплового расширения эталонного кристалла, ΔT - разность температур эталонного и исследуемого кристаллов в минимуме кривой отражения, по которому определяют концентрацию примеси в измеренной точке, отличающийся тем, что исследуемый кристалл сканируют перпендикулярно относительно узкого пучка нейтронов, измерение величины исследуемого кристалла относительно эталонного проводят в нескольких «m» точках, вычисляют среднее значение по всем измеренным точкам исследуемого кристалла, определяют изменение пространственного распределения концентрации примесей для каждой точки исследуемого кристалла относительно полученного среднего значения по формуле , где n - средняя концентрация примеси в исследуемом кристалле;n - концентрация примеси в измеряемой точке; , где m - число точек сканирования;k - коэффициент влияния конкретной примеси на межплоскостное расстояние, справочная величина.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ В МОНОКРИСТАЛЛЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 11.
27.01.2013
№216.012.2105

Мажоритарный модуль

Изобретение относится к области вычислительной техники и может быть использовано в системах цифровой вычислительной техники как средство предварительной обработки информации для реализации мажоритарной функции либо дизъюнкции, либо конъюнкции входных двоичных сигналов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002473954
Дата охранного документа: 27.01.2013
20.02.2013
№216.012.2836

Логический преобразователь

Изобретение относится к вычислительной технике и может быть использовано для построения средств автоматики, функциональных узлов систем управления и др. Техническим результатом является упрощение устройства за счет сокращения количества выводов, на которые подаются входные двоичные сигналы, и...
Тип: Изобретение
Номер охранного документа: 0002475814
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.28c1

Импульсный селектор

Изобретение относится к импульсной технике и может быть использовано для построения средств автоматики, функциональных узлов систем управления и др. Техническим результатом является уменьшение аппаратурных затрат при сохранении функциональных возможностей. Импульсный селектор предназначен для...
Тип: Изобретение
Номер охранного документа: 0002475953
Дата охранного документа: 20.02.2013
10.04.2013
№216.012.34a8

Импульсный селектор

Изобретение относится к импульсной технике и может быть использовано в системах автоматического регулирования и управления. Техническим результатом является расширение функциональных возможностей за счет обработки n импульсных сигналов. Импульсный селектор содержит 3n-4 ключей и резистор,...
Тип: Изобретение
Номер охранного документа: 0002479023
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3508

Импульсный селектор

Изобретение относится к импульсной технике и может быть использовано для построения средств автоматики, функциональных узлов систем управления. Техническим результатом является расширение функциональных возможностей за счет обеспечения выбора из кортежа (τ,…,τ) компоненты τ=τ, занимающей...
Тип: Изобретение
Номер охранного документа: 0002479119
Дата охранного документа: 10.04.2013
27.05.2013
№216.012.4570

Ранговый селектор

Изобретение относится к автоматике и аналоговой вычислительной технике. Техническим результатом является уменьшение аппаратурных затрат при сохранении функциональных возможностей. Ранговый селектор содержит n дифференциальных компараторов (l, …, l), n элементов И (2, …, 2), 4n+3 ключей (3, …,...
Тип: Изобретение
Номер охранного документа: 0002483353
Дата охранного документа: 27.05.2013
10.05.2014
№216.012.bf8b

Аналоговый логический элемент

Изобретение относится к автоматике и аналоговой вычислительной технике и может быть использовано для построения функциональных узлов аналоговых вычислительных машин, средств автоматического регулирования и управления, аналоговых процессоров. Техническим результатом является обеспечение...
Тип: Изобретение
Номер охранного документа: 0002514784
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ce87

Ранговый фильтр

Изобретение относится к автоматике и аналоговой вычислительное технике и может быть использовано для построения функциональных узлов аналоговых вычислительных машин, средств автоматического регулирования и управления, аналоговых процессоров. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002518642
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ce9d

Реляторный модуль

Изобретение предназначено для воспроизведения бесповторных функций бесконечнозначной логики и может быть использовано в системах аналоговой вычислительной техники как средство предварительной обработки информации. Техническим результатом является обеспечение реализации любой из функций вида...
Тип: Изобретение
Номер охранного документа: 0002518664
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cea2

Логический преобразователь

Устройство предназначено для реализации любой из четырех простых симметричных булевых функций, зависящих от четырех аргументов - входных двоичных сигналов, и может быть использовано в системах цифровой вычислительной техники как средство преобразования кодов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002518669
Дата охранного документа: 10.06.2014
Показаны записи 1-1 из 1.
25.08.2017
№217.015.afaf

Способ измерения малых изменений энергий нейтронов

Изобретение относится к области исследования или анализа материалов с помощью прецизионной нейтронной спектрометрии, основанной на использовании метода спин-эхо малоуглового рассеяния. Способ измерения изменения малых энергии нейтронов основан на использовании спин-эхо спектроскопии и...
Тип: Изобретение
Номер охранного документа: 0002611107
Дата охранного документа: 21.02.2017
+ добавить свой РИД