×
10.02.2015
216.013.26ea

Результат интеллектуальной деятельности: МИКРОСИСТЕМНЫЙ ЁМКОСТНОЙ ДАТЧИК ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

Вид РИД

Изобретение

Аннотация: Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности. Техническим результатом заявленного изобретения является: - совмещение в одной конструкции датчиков различных физических величин, в частности: перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности; - возможность функционирования в условиях открытого космоса и устойчивость к жестким температурным условиям эксплуатации; - возможность изготовления датчика групповыми методами по стандартным технологиям микрообработки кремния и механообработки элементов конструкции; - широкие возможности по унификации и созданию типоразмерного ряда датчиков с различными пределами измерения необходимых физических величин; - возможность подстройки датчика за счет активного режима работы; - применение в качестве датчика обратной связи для систем на основе подвижных термомеханических микроактюаторов. Технический результат достигается тем, что микросистемный емкостной датчик измерения физических величин включает: - основание из диэлектрического материала, - один или более исполнительных элементов в виде подвижных термомеханических микроактюаторов, расположенных на основании; при этом над слоем полиимида подвижных термомеханических микроактюаторов на боковых противоположных гранях кремниевых канавок, заполненных полиимидом, сформированы металлические обкладки конденсатора, параллельно соединенные между собой проводниками, идущими вдоль подвижного хвостовика термомеханического микроактюатора до его основания; на основании и/или внутри основания сформированы металлизированные дорожки для электрического контакта к площадкам подвижного термомеханического микроактюатора, выполненным с возможностью измерения емкости между обкладками сформированного на подвижном термомеханическом микроактюаторе конденсатора. 3 з.п. ф-лы, 1 ил.

Область техники

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может выполнять роль исполнительного элемента датчиковой аппаратуры в части измерения параметров перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности.

Уровень техники

Из уровня техники известно устройство «MEMS sensor suite on chip», представляющее собой интегрированный на одном устройстве чип на основе микроэлектромеханических устройств [Л1]. Датчик позволяет измерять температуру, влажность и ускорение по двум осям, тем самым объединяя в своей конструкции одновременно датчик влажности, температуры и акселерометр. Датчик влажности образован конденсатором, чувствительным к влажности, температурный датчик представляет собой терморезистор. Датчики изготавливаются в едином технологическом цикле, что позволяет интегрировать их в единый чип. Возможности подключения позволяют считывать показания датчиков, устанавливать диапазон измерения и обрабатывать входные/выходные сигналы. Точность измерения влажности - 0,1%, температуры - 0,5°C, ускорения - 0,2 g.

Недостатком изобретения является ограниченный диапазон температурных измерений: - 40°C, сложность конструкции, обусловленная различными принципами функционирования каждого из входящих в систему датчиков и невозможность функционирования в жестких условиях, в частности в условиях открытого космоса.

Из уровня техники известно устройство «Integrated MEMS 3D multi-sensor», представляющее собой аппарат для измерения ускорения и магнитных полей по трем осям [Л2]. Принцип функционирования основан на измерении емкости сформированных в структуре мостов. Всего сформировано 4 моста, объединенные попарно и соединенные пружинами. Каждая из пар способна проводить измерение по двум осям, пары мостов находятся в перпендикулярных плоскостях, тем самым позволяя организовать измерения по всем трем осям.

Основным недостатком данного технического решения является ограниченное количество измеряемых физических величин, сложность конструкции и невозможность функционирования в жестких условиях, в частности в условиях открытого космоса.

Из уровня техники известно устройство «MEMS-based micro and nano grippers with two-axis force sensors», представляющее собой микрозонд с возможностью определения усилий на зажимах по двум осям [Л3]. Данный датчик способен определять как усилие зажима, так и силы, приложенные к концевикам захватов вдоль нормального к ним направления. Захватывающие движения создаются одним или несколькими термоэлектрическими актюаторами. Разрешение датчика достигает единиц нН. Конструкция позволяет организовать единый технологический процесс изготовления устройства.

Недостатком известной конструкции является ограниченное количество измеряемых физических величин, узкий диапазон их измерения, а также невозможность функционирования в жестких условиях, в частности в условиях открытого космоса.

Раскрытие изобретения

Техническим результатом заявленного изобретения является:

- совмещение в одной конструкции датчиков различных физических величин, в частности: перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности;

- возможность функционирования в условиях открытого космоса и устойчивость к жестким температурным условиям эксплуатации;

- возможность изготовления датчика групповыми методами по стандартным технологиям микрообработки кремния и механообработки элементов конструкции;

- широкие возможности по унификации и созданию типоразмерного ряда датчиков с различными пределами измерения необходимых физических величин;

- возможность подстройки датчика за счет активного режима работы;

- применение в качестве датчика обратной связи для систем на основе подвижных термомеханических микроактюаторов.

Технический результат достигается тем, что микросистемный емкостной датчик измерения физических величин включает:

- основание из диэлектрического материала,

- один или более исполнительных элементов в виде подвижных термомеханических микроактюаторов, расположенных на основании;

при этом над слоем полиимида подвижных термомеханических микроактюаторов на боковых противоположных гранях кремниевых канавок, заполненных полиимидом, сформированы металлические обкладки конденсатора, параллельно соединенные между собой проводниками, идущими вдоль подвижного хвостовика термомеханического микроактюатора до его основания;

на основании и/или внутри основания сформированы металлизированные дорожки для электрического контакта к площадкам подвижного термомеханического микроактюатора, выполненным с возможностью измерения емкости между обкладками сформированного на подвижном термомеханическом микроактюаторе конденсатора.

В предпочтительном варианте, подвижные термомеханические микроактюаторы выполнены в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из параллельных трапециевидных вставок из монокристаллического кремния с ориентацией [100], расположенных перпендикулярно основной оси консольной балки и соединенных полиимидными прослойками, образованными полиимидной пленкой, при этом полиимидная пленка выполнена из слоя полипиромеллитимида, прилегающего к параллельным трапециевидным вставкам. Полиимидные прослойки, образованные полиимидной пленкой между параллельными трапециевидными вставками, выполнены в V-образной или трапециевидной форме в поперечном сечении с расстоянием между соседними параллельными трапециевидными вставками, равным или отличным от нуля. На нижней поверхности подвижного термомеханического микроактюатора, обращенной к основанию, сформирован слой металлизации, обладающий омическим контактом с кремнием и представляющий собой две параллельные шины, а на основании дополнительно сформированы металлизированные дорожки, обеспечивающие электрический контакт к данному слою металлизации посредством навесного монтажа металлическими проводниками.

Краткое описание чертежей

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, где показано следующее.

На фиг.1 представлена конструкция заявленного микросистемного емкостного датчика измерения физических величин на основе подвижного термомеханического микроактюатора, где:

а - общий вид конструкции микросистемного емкостного датчика измерения физических величин;

б - укрупненное изображение сечения микросистемного емкостного датчика измерения физических величин в канавке, сформированной в кремнии и заполненной полиимидом, где:

U - электрическое напряжение, подаваемое на контакты подвижного термомеханического микроактюатора;

C - емкость, измеряемая между обкладками конденсатора, сформированного на боковых противоположных гранях канавок подвижного термомеханического микроактюатора и образующего встречно-штыревую структуру;

α - угол отклонения хвостовика подвижного термомеханического микроактюатора от плоскости основания из диэлектрического материала;

n - количество канавок в структуре подвижного термомеханического микроактюатора.

На фигуре 1 обозначено следующее:

1 - подвижной термомеханический микроактюатор;

2 - основание из диэлектрического материала с металлизированными дорожками и контактными площадками;

3 - металлические обкладки конденсатора с проводящими дорожками;

4 - полиимид;

5 - кремний.

Осуществление и примеры реализации

Заявленное изобретение способно проводить измерения физических величин через измерение характеристики сформированного в структуре подвижного термомеханического микроактюатора конденсатора.

Емкость конденсатора, сформированного в структуре подвижного термомеханического микроактюатора, определяется как сумма емкостей различной природы. В частности, определяющими, оказывающими основное влияние на суммарную емкость, являются: воздушная емкость между боковыми гранями кремниевых канавок со слоем металлизации, контактная емкость между полупроводником и нижним слоем металлизации, емкость через полиимидный слой между верхним и нижним проводником, емкость между соседними кремниевыми канавками в случае отсутствия нижней металлизации, а также иные побочные емкости, значение которых много меньше вышеназванных.

Как видно на фиг.1, при изгибе балки подвижного термомеханического микроактюатора, происходит в определенной степени равномерное изменение расстояния между обкладками в каждой из канавок, заполненных полиимидным слоем, за счет изменения угла между боковыми гранями кремниевых канавок. При этом изгиб балки может происходить в результате воздействия сил различной природы, в том числе: прямого механического воздействия на хвостовик подвижного термомеханического микроактюатора, либо теплового воздействия как от внешнего источника, так и от электрического сигнала, поданного на нагреватели подвижного термомеханического микроактюатора. Перемещение в результате температурного воздействия возможно благодаря биморфной структуре подвижного термомеханического микроактюатора, содержащей материалы с резко различающимися коэффициентами температурного расширения. Таким образом, зная первоначальное положение подвижного термомеханического микроактюатора и значение емкости на конденсаторе, можно с определенной точностью установить положение хвостовика подвижного термомеханического микроактюатора относительно основания, на котором он установлен. Это, в свою очередь, дает возможность определить следующие физические величины: перемещение, ускорение, усилие, массу и поток в случае прямого механического воздействия, температуру в случае внешнего или внутреннего температурного воздействия, электрическую мощность в случае нагрева от внутреннего нагревателя подвижного термомеханического микроактюатора. В последнем случае, датчик устанавливается в разрез электрической линии, на которой необходимо измерить мощность, эквивалентную в данном случае, установившейся на подвижном термомеханическом микроактюаторе, температуре. К изменению емкости датчика также приводит и изменение влажности воздуха окружающей среды. Кроме того, благодаря наличию кремния в структуре устройства, имеет место фотоэффект, возникаемый при воздействии на датчик светового излучения. Стоит отметить, что подобная универсальность заявленного датчика оказывает не только положительное влияние, но и вносит ряд ограничений на его использование. При необходимости определить какую-либо из величин возникает проблема фильтрации побочного влияния иных факторов, на которые датчик также реагирует.

Наличие нагревателя в структуре подвижного термомеханического микроактюатора в виде кремниевых балок дает возможности для регулирования первоначального положения балки подвижного термомеханического микроактюатора относительно основания, что полезно при подстройке датчика под различные условия измерения, позволяя также исключить паразитное влияние внешнего температурного поля (температуры окружающей среды) и регулировать чувствительность в случае измерения потока.

Изготовленные по предложенной конструкции образцы позволили получить датчики со значением емкости в диапазонах 0,7-0,8 пФ (без слоя металлизации нагревателя) и 40-42 пФ (со слоем металлизации нагревателя). При этом перемещение хвостовика подвижного термомеханического микроактюатора приводит к изменению емкости до 2,7% от исходной величины, увеличение освещенности приводит к увеличению емкости до 1,5%, увеличение влажности приводит к увеличению емкости до 6,1%.

Таким образом, заявленное изобретение обеспечивает создание основных элементов датчиковой аппаратуры с возможностью функционирования как самостоятельно, так и в составе различных измерительных устройств и устройств с обратной связью по параметрам: перемещения, ускорения, температуры, механической силы, массы, электрической мощности, потока, освещенности и влажности.

Источники информации

1. Патент США на изобретение US 7748272. MEMS sensor suite on chip / M.S. Kranz (US), R.F. Elliot, M.R. Whitley and other; Morgan Research Corporation (US). - Опубл. 06.07.2010. - 15 с. - [Л1].

2. Патент США на изобретение US 7784344. Integrated MEMS 3D multi-sensor / I. Pavelescu (RO), I. Georgescu (RO), D.E. Guran (RO), C.P. Cobianu (RO); Honeywell International Inc. (US). - Опубл. 31.08.2010. - 14 с. - [Л2].

3. Патент США на изобретение US 8317245. MEMS-based micro and nano grippers with two-axis force sensors / Y. Sun (CA), K. Kim (CA). - Опубл. 27.11.2012. - 7 c. - [Л3].


МИКРОСИСТЕМНЫЙ ЁМКОСТНОЙ ДАТЧИК ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН
Источник поступления информации: Роспатент

Показаны записи 31-40 из 91.
10.08.2014
№216.012.e673

Способ автоматизированной калибровки следящих антенных систем

Изобретение относится к области создания антенных систем с функцией слежения за подвижным источником сигнала. Достигаемый технический результат - возможность быстрой калибровки следящих антенных систем с высокой точностью и надежностью. Указанный результат достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002524788
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e89e

Способ одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений и система для его реализации

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС). Первая ИС работает в запросном когерентном режиме и измеряет относительные...
Тип: Изобретение
Номер охранного документа: 0002525343
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e97d

Электронный датчик тока и напряжения на высоком потенциале

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения токов и напряжений. Электронный датчик тока и напряжения на высоком потенциале содержит измерительный модуль, высоковольтный токопровод, соединенные с аналого-цифровым преобразователем. Вход...
Тип: Изобретение
Номер охранного документа: 0002525581
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9b1

Солнечная батарея для малоразмерных космических аппаратов и способ ее изготовления

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ)....
Тип: Изобретение
Номер охранного документа: 0002525633
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecb1

Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА...
Тип: Изобретение
Номер охранного документа: 0002526401
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fbdc

Способ радиоприема высокоскоростной информации космической радиолинии и устройство для его реализации

Группа изобретений относится к вычислительной технике. Технический результат заключается в компенсации детерминированных искажений, вызываемых эффектом Доплера с целью уменьшения потери сигнала. Способ радиоприема высокоскоростной информации космической радиолинии, в котором выполняют прием...
Тип: Изобретение
Номер охранного документа: 0002530322
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe90

Способ дистанционного зондирования земли (дзз)

Изобретение относится к области оптического приборостроения и может быть использовано для получения изображений земной поверхности через турбулентную атмосферу. Способ основан на совместном использовании длинно-экспозиционного изображения и серии из N спектрально-фильтруемых...
Тип: Изобретение
Номер охранного документа: 0002531024
Дата охранного документа: 20.10.2014
27.12.2014
№216.013.15b4

Способ очистки, активации и осветления серебряных покрытий в газоразрядной плазме

Заявленное изобретение относится к области радиоэлектронной техники и микроэлектроники, а также может использоваться в других областях техники для очистки, активации и осветления различных изделий с серебряным покрытием. Способ очистки, активации и осветления серебряных покрытий в газоразрядной...
Тип: Изобретение
Номер охранного документа: 0002536980
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1622

Способ синхронизации шкал времени двух и более территориально удаленных наземных хранителей времени и система для его реализации

Изобретение относится к космической области техники и может применяться в спутниковых навигационных системах типа ГЛОНАСС, GPS и др. для синхронизации как минимум двух территориально удаленных наземных хранителей времени спутниковой навигационной системы, например центральных синхронизаторов...
Тип: Изобретение
Номер охранного документа: 0002537090
Дата охранного документа: 27.12.2014
Показаны записи 31-40 из 90.
10.08.2014
№216.012.e89e

Способ одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений и система для его реализации

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС). Первая ИС работает в запросном когерентном режиме и измеряет относительные...
Тип: Изобретение
Номер охранного документа: 0002525343
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e97d

Электронный датчик тока и напряжения на высоком потенциале

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения токов и напряжений. Электронный датчик тока и напряжения на высоком потенциале содержит измерительный модуль, высоковольтный токопровод, соединенные с аналого-цифровым преобразователем. Вход...
Тип: Изобретение
Номер охранного документа: 0002525581
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9b1

Солнечная батарея для малоразмерных космических аппаратов и способ ее изготовления

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ)....
Тип: Изобретение
Номер охранного документа: 0002525633
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.e9b2

Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата

Заявленное изобретение относится к системам ориентации космических аппаратов и может быть использовано в качестве активного ультрафиолетового солнечного датчика. Активный ультрафиолетовый солнечный датчик для системы ориентации малоразмерного космического аппарата содержит фотоприемник на...
Тип: Изобретение
Номер охранного документа: 0002525634
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ecb1

Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используются три территориально разнесенные наземные измерительные станции (ИС) и приемоответчик КА. ИС измеряют значения радиальной скорости КА...
Тип: Изобретение
Номер охранного документа: 0002526401
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fbdc

Способ радиоприема высокоскоростной информации космической радиолинии и устройство для его реализации

Группа изобретений относится к вычислительной технике. Технический результат заключается в компенсации детерминированных искажений, вызываемых эффектом Доплера с целью уменьшения потери сигнала. Способ радиоприема высокоскоростной информации космической радиолинии, в котором выполняют прием...
Тип: Изобретение
Номер охранного документа: 0002530322
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe90

Способ дистанционного зондирования земли (дзз)

Изобретение относится к области оптического приборостроения и может быть использовано для получения изображений земной поверхности через турбулентную атмосферу. Способ основан на совместном использовании длинно-экспозиционного изображения и серии из N спектрально-фильтруемых...
Тип: Изобретение
Номер охранного документа: 0002531024
Дата охранного документа: 20.10.2014
27.12.2014
№216.013.15b4

Способ очистки, активации и осветления серебряных покрытий в газоразрядной плазме

Заявленное изобретение относится к области радиоэлектронной техники и микроэлектроники, а также может использоваться в других областях техники для очистки, активации и осветления различных изделий с серебряным покрытием. Способ очистки, активации и осветления серебряных покрытий в газоразрядной...
Тип: Изобретение
Номер охранного документа: 0002536980
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1622

Способ синхронизации шкал времени двух и более территориально удаленных наземных хранителей времени и система для его реализации

Изобретение относится к космической области техники и может применяться в спутниковых навигационных системах типа ГЛОНАСС, GPS и др. для синхронизации как минимум двух территориально удаленных наземных хранителей времени спутниковой навигационной системы, например центральных синхронизаторов...
Тип: Изобретение
Номер охранного документа: 0002537090
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.18f6

Способ коррекции траектории полета космического аппарата и устройство для его реализации

Способ коррекции траектории полета космического аппарата и устройство для его реализации относится к космической технике, в частности к навигации спутниковых систем. Достигаемый технический результат - повышение точности навигации комплексированием ошибок детерминированного происхождения в...
Тип: Изобретение
Номер охранного документа: 0002537818
Дата охранного документа: 10.01.2015
+ добавить свой РИД