×
10.02.2015
216.013.2695

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ЛИТЕЙНЫХ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля, как безуглеродистых, так и содержащих углерод, для изготовления лопаток и других деталей газотурбинных двигателей с монокристаллической структурой. Способ производства литейных жаропрочных сплавов на основе никеля включает расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава, введение отходов безуглеродистых литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок. В качестве рафинирующих добавок в расплав вводят кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций- или магнийсодержащей лигатуры в вакууме 1×10-5×10 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель- или кобальтсодержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через нагретый пенокерамический фильтр. Технический результат - повышение длительной прочности сплавов за счет снижения в сплавах содержания серы, кислорода и азота . 2 н. и 4 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля, как безуглеродистых, так и содержащих углерод, для изготовления лопаток и других деталей газотурбинных двигателей с монокристаллической структурой.

Одним из основных требований к таким сплавам является необходимость обеспечения их ультравысокой чистоты по вредным примесям серы, кислороду и азоту, что необходимо для получения высококачественных бездефектных монокристаллических деталей. При повышенной загрязненности расплава этими примесями образующиеся в монокристаллах соединения - сульфиды, оксиды и нитриды, являются концентраторами напряжений, инициирующими зарождение трещин при эксплуатации деталей, и источником гетерогенного зарождения в монокристаллах равноосных «паразитных» зерен, что существенно снижает прочностные характеристики и стабильность свойств монокристаллов, а также выход годного монокристаллических лопаток.

Известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии с введением окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. и последующим введением в вакууме редкоземельных металлов, хрома и активных легирующих элементов, при этом после введения в расплав активных легирующих элементов вводят кальций в количестве 0,02-0,20% от массы расплава под давлением инертного газа 20-130 мм рт.ст., затем создают вакуум, после чего вводят лантан (Патент РФ №2221067).

Недостатком известного способа является невозможность обеспечить в сплаве ультранизкое содержание серы, кислорода и азота, необходимое для получения высокого выхода годного монокристаллических отливок.

Известен способ выплавки безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование расплава в две стадии введением окислителя в атмосфере инертного газа под давлением 20-150 мм рт.ст. и последующим введением в вакууме редкоземельных металлов и добавление хрома и активных легирующих элементов, в котором после проведения обезуглероживающего рафинирования в расплав вводят магний в количестве 0,02-0,20% от массы расплава, церий и иттрий в суммарном количестве 0,01-0,10% от массы расплава, а после введения активных легирующих элементов в вакууме вводят магний в количестве 0,003-0,015% от массы расплава и совместно лантан и скандий в суммарном количестве 0,01-0,50% от массы расплава (Патент РФ №2353688).

Недостатком способа является то, что из-за достаточно высокого содержания серы, кислорода и азота в расплаве он не позволяет повысить длительную прочность монокристаллических сплавов.

Наиболее близким к предлагаемому способу производства безуглеродистых литейных жаропрочных сплавов на основе никеля, взятому за прототип, является способ производства литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава в две стадии в атмосфере инертного газа, введение хрома, введение отходов безуглеродистых литейных жаропрочных сплавов на основе никеля в количестве до 70% от массы шихтовых материалов, введение активных легирующих элементов и рафинирующих добавок, в котором в качестве одной из рафинирующих добавок вводят гидрид по крайней мере одного из входящих в состав сплава металла из группы титан, тантал, ниобий, ванадий и гафний, в количестве, определяемом содержанием водорода 0,005-0,1% от массы шихтовых материалов, при этом гидрид вводят в расплав в атмосфере инертного газа при давлении 50-200 мм рт.ст. и температуре расплава, на 100-240°C выше температуры ликвидус сплава (Патент РФ №2344186 п.1. формулы изобретения).

Недостатком способа является то, что он не позволяет получить требуемое для монокристаллических жаропрочных сплавов ультранизкое содержание серы, и не может обеспечить повышение длительной прочности.

Известен способ получения литейных жаропрочных сплавов на никелевой основе, содержащих углерод, включающий расплавление в вакууме шихтовых материалов, содержащих до 80% отходов литейных жаропрочных сплавов, рафинирование в течение 10-20 мин при определенной температуре, введение активных легирующих добавок (РЗМ) в количестве 0,01-0,05 масс.% (Патент РФ №1709738).

Недостатками способа являются недостаточно полное удаление кислорода и азота из металла, недостаточно высокие эксплуатационные свойства жаропрочных сплавов.

Известен способ получения литейных жаропрочных сплавов на никелевой основе, содержащих углерод, взятый за прототип, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, содержащих до 70% по массе отходов литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, в котором в качестве одной из рафинирующих добавок вводят гидрид по крайней мере одного из входящих в состав металла из группы титан, тантал, ниобий, ванадий и гафний, в количестве, определяемом содержанием водорода 0,005-0,1% от массы шихтовых материалов, при этом гидрид вводят в расплав в атмосфере инертного газа при давлении 50-200 мм рт.ст. и температуре расплава на 100-240°C выше температуры ликвидус сплава (Патент РФ №2344186 п.2 формулы изобретения).

Недостатком способа является то, что он не позволяет получить требуемое для монокристаллических жаропрочных сплавов ультранизкое содержание серы, и не может обеспечить повышение длительной прочности.

Технической задачей предлагаемого способа производства литейных жаропрочных сплавов, как безуглеродистых, так и содержащих углерод, является получение в сплавах ультранизкого содержания серы, кислорода и азота и повышение длительной прочности сплавов.

Техническая задача достигается тем, что предложен способ производства литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, проведение обезуглероживающего рафинирования расплава, введение отходов безуглеродистых литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, в котором в качестве рафинирующих добавок используют кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций- или магнийсодержащей лигатуры в вакууме 1×10-2-5×10-4 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель- или кобальтсодержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через пенокерамический фильтр.

Предложен также способ производства литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, введение отходов литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок, в котором в качестве рафинирующих добавок используют кальций и/или магний в количестве 0,001-0,10% от массы расплава в виде гранул кальций- или магнийсодержащей лигатуры в вакууме 1×10-2-5×10-4 мм рт.ст., затем в расплав вводят один или более редкоземельных металлов в виде никель или кобальт содержащей лигатуры, включающей редкоземельные металлы, после чего производят фильтрацию расплава через пенокерамический фильтр.

В качестве редкоземельного металла используют один или несколько элементов из группы лантан, церий иттрий, скандий, празеодим, неодим, которые вводят из лигатуры в количестве 0,01-0,50% от массы расплава.

В качестве шихтовых материалов используют отходы литейных жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.

Установлено, что обеспечение необходимого вакуума, использование в качестве рафинирующих добавок кальция и/или магния в заданных количествах при введении их в виде гранул кальций- и магнийсодержащей лигатуры и редкоземельных металлов в виде никель- или кобальтсодержащих лигатур с редкоземельным металлом с последующей фильтрацией расплава через пенокерамический фильтр обеспечивают глубокую очистку расплава от примесей серы, кислорода и азота и обеспечивает повышение длительной прочности сплава.

Примеры осуществления способа

Пример 1. По предлагаемому способу осуществляли выплавку литейного жаропрочного сплава на никелевой основе системы Ni-Co-Cr-Al-Ti-W-Mo-Re-Ta, например, сплава ЖС36-ВИ. Всего было сделано 7 плавок. Плавки проводили в вакуумной индукционной печи в тигле 10 кг. В тигель загружали углеродсодержащие шихтовые материалы никель, кобальт, вольфрам, молибден, рений. На 1-й плавке использовали отходы предлагаемого сплавав количестве 10% от массы плавки. На 2-й, 3-й и 4-й плавке использовали отходы предлагаемого сплава в количестве 50% от массы плавки. На 5-й, 6-й и 7-й плавке использовали 100% отходов предлагаемого сплава без применения легирующих металлов.

После расплавления шихты на 1-й, 2-й, 3-й и 4-й плавке провели обезуглероживающее рафинирование расплава, в расплав последовательно ввели отходы предлагаемого сплава и активные легирующие металлы - титан, тантал, алюминий.

На 1-й плавке в расплав под вакуумом 1×10-2 мм рт.ст. ввели 0,001% кальция в виде гранул лигатуры никель-кальций при температуре расплава 1540°C, затем ввели 0,50% иттрия в виде лигатуры никель-иттрий, после чего расплав пролили через нагретый пенокерамический фильтр.

На 2-й плавке в расплав под вакуумом 1×10-3 мм рт.ст. ввели 0,10% кальция в виде гранул лигатуры никель-кальций при температуре 1565°C, затем ввели совместно 0,10% лантана в виде лигатуры никель-лантан и 0,10% церия в виде лигатуры никель-церий, после чего расплав пролили через нагретый пенокерамический фильтр.

На 3-й плавке в расплав под вакуумом 5×10-4 мм рт.ст. ввели 0,001% магния в виде гранул лигатуры никель-магний при температуре расплава 1590°C, затем ввели совместно 0,05% скандия, 0,05% празеодима и 0,05% неодима в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 4-й плавке в расплав под вакуумом 1×10-2 мм рт.ст. ввели 0,10% магния в виде гранул лигатуры никель-магний при температуре расплава 1540°C, затем ввели совместно 0,10% церия, 0,10% иттрия, 0,10% лантана и 0,20% скандия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 5-й плавке в расплав под вакуумом 1×10-3 мм рт.ст. ввели 0,05% кальция в виде гранул лигатуры никель-кальций при температуре расплава 1560°C, затем ввели 0,01% скандия в виде лигатуры с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 6-й плавке в расплав под вакуумом 5×10-4 мм рт.ст. ввели 0,05% магния в виде гранул лигатуры никель-магний при температуре расплава 1540°C, затем ввели совместно 0,15% скандия, 0,15% иттрия и 0,10% церия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 7-й плавке в расплав под вакуумом 5×10-3 мм рт.ст. ввели 0,05% магния в виде гранул лигатуры никель-магний и 0,05% кальция в виде гранул лигатуры никель-кальций (суммарно 0,10%) при температуре расплава 1565°C, затем ввели совместно 0,05% празеодима, 0,15% неодима, 0,10% лантана, 0,10% скандия и 0,05% церия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

Технологические параметры плавок и полученные результаты по содержанию серы, кислорода и азота и значения длительной прочности приведены в табл.1. Там же приведены технологические параметры плавки по способу-прототипу и полученные результаты.

Из табл.1 видно, что в металле, выплавленном по способу-прототипу, содержание серы, кислорода и азота в 2-3 раза выше, чем в металле, выплавленном по предлагаемому способу. Из полученного металла были отлиты заготовки с монокристаллической структурой с кристаллографической ориентацией 001. Длительная прочность сплава, выплавленного по предлагаемому способу, увеличилась в 1,6 раз.

Пример 2. По предлагаемому способу осуществили выплавку литейного жаропрочного сплава на никелевой основе системы Ni-Co-Cr-Al-W-Mo-Nb-Re-Ta-C, например, сплава ЖС32-ВИ. Всего было сделано 7 плавок. Плавки проводили в вакуумной индукционной печи в тигле 10 кг. В тигель загружали шихтовые материалы никель, кобальт, вольфрам, молибден, рений. На 1-й плавке использовали отходы предлагаемого сплава в количестве 15% от массы плавки. На 2-й, 3-й и 4-й плавке использовали отходы предлагаемого сплава в количестве 50% от массы плавки. На 5-й, 6-й и 7-й плавке использовали 100% отходов предлагаемого сплава без применения легирующих элементов.

После расплавления шихты на плавках 1, 2, 3 и 4 в расплав последовательно присадили углерод, активные легирующие элементы - ниобий, тантал, алюминий и отходы предлагаемого сплава.

На 1-й плавке в расплав под вакуумом 1×10-2 мм рт.ст. ввели 0,001% магния в виде гранул лигатуры никель-магний при температуре расплава 1530°C, затем ввели 0,50% иттрия в виде лигатуры никель-иттрий, после чего расплав пролили через нагретый пенокерамический фильтр.

На 2-й плавке в расплав под вакуумом 5×10-3 мм рт.ст. ввели 0,10% магния в виде гранул лигатуры никель-магний при температуре 1580°C, затем ввели 0,10% церия и 0,10% иттрия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 3-й плавке в расплав под вакуумом 5×10-4 мм рт.ст. ввели 0,001% кальция в виде гранул лигатуры никель-кальций при температуре расплава 1565°C, затем ввели совместно 0,10% лантана, 0,15% церия и 0,25% иттрия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 4-й плавке в расплав под вакуумом 1×10-2 мм рт.ст. ввели 0,10% кальция в виде гранул лигатуры никель-кальций при температуре расплава 1530°C, затем ввели совместно 0,05% празеодима, 0,10% неодима, 0,10% церия и 0,15% скандия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 5-й плавке в расплав под вакуумом 1×10-3 мм рт.ст. ввели 0,05% магния в виде гранул лигатуры никель-магний при температуре 1550°C, затем ввели 0,10% лантана и 0,20% церия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 6-й плавке в расплав под вакуумом 5×10-4 мм рт.ст. ввели 0,05% кальция в виде гранул лигатуры никель-кальций при температуре расплава 1585°C, затем ввели совместно 0,15% скандия, 0,15% иттрия и 0,10% церия в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

На 7-й плавке в расплав под вакуумом 1×10-3 мм рт.ст. ввели совместно 0,05% кальция в виде гранул лигатуры никель-кальций и 0,05% магния в виде гранул лигатуры никель-магний (суммарно 0,10%) при температуре расплава 1565°C, затем ввели совместно 0,15% лантана, 0,05% церия, 0,15% скандия, 0,05% иттрия и 0,10% празеодима в виде их лигатур с никелем, после чего расплав пролили через нагретый пенокерамический фильтр.

Технологические параметры плавок и полученные результаты по содержанию серы, кислорода и азота приведены в табл.2. Там же приведены технологические параметры плавки по способу-прототипу и полученные результаты.

Из табл.2 видно, что в металле, выплавленном по способу-прототипу, содержание серы, кислорода и азота в 4-6 раз выше, чем в металле, выплавленном по предлагаемому способу. Из полученного металла были отлиты заготовки с монокристаллической структурой с кристаллографической ориентацией 001. Длительная прочность сплава, выплавленного по предлагаемому способу, увеличилась в 1,7 раз.

Изобретение не ограничивается приведенными примерами.

Предлагаемый способ позволяет получать в литейных жаропрочных сплавах на никелевой основе содержание серы ≤0,0001%, кислорода ≤0,0002%, азота ≤0,0001%. Тем самым устраняется вероятность образования дефектов в монокристаллах, поскольку не нарушается процесс кристаллизации при выращивании монокристаллов и в них не образуются сульфиды, оксиды и нитриды, которые являются зародышами для образования равноосных зерен и понижают свойства сплавов.

Использование изобретения позволит повысить ресурс и надежность работы авиационных высоконагруженных газотурбинных двигателей.

Таблица 1
№ п/п Технологические параметры плавок Содержание примесей, % Время до разрушения при испытании на длительную прочность при T=975°C и σ=36 кгс/мм2, час
Условия введения рафинирующих добавок для удаления примесей (давление) мм рт.ст. Количество введенной рафинирующей добавки, % Количество введенного РЗМ, % от массы расплава S O2 N2
В вакууме
1 1·10-2 0,001 Ca 0,50 Y 0,00010 0,00020 0,00010 60
2 1·10-3 0,10 Ca ∑0,10 La, 0,10 Ce 0,00008 0,00015 0,00008 72
3 5·10-4 0,001 Mg ∑0,05 Sc, 0,05 Pr, 0,05 Nd 0,00005 0,00010 0,00005 68
4 1·10-2 0,10 Mg ∑0,10 Ce, 0,10 Y, 0,10 La, 0,20 Sc 0,00006 0,00010 0,00006 75
5 1·10-3 0,05 Ca 0,01 Sc 0,00010 0,00020 0,00010 62
6 5·10-4 0,05 Mg ∑0,15 Sc, 0,15 Y, 0,10 Ce 0,00007 0,00013 0,00007 69
7 5·10-3 ∑0,05 Mg 0,05 Ca ∑0,05 Pr, 0,15 Nd, 0,10 La, 0.10 Sc, 0,05 Ce 0,00007 0,00010 0,00007 78
8 Способ-прототип В атмосфере инертного газа 0,05 H2 - 0,00040 0,00050 0,00030 41
1·102

Таблица 2
№№ п/п Технологические параметры плавок Содержание примесей, % Время до разрушения при испытании на длительную прочность при T=975°C и σ=30 кгс/мм2, час
Условия введения рафинирующих добавок для удаления примесей (давление) мм рт.ст. Количество введенной рафинирующей добавки, % Количество введенного РЗМ, % от массы расплава S O2 N2
В вакууме
1 1·10-2 0,001 Mg 0,50 Y 0,00010 0,00015 0,00010 130
2 5·10-3 0,10 Mg ∑0,10 Ce, 0,10 Y 0,00009 0,00018 0,00010 133
3 5·10-4 0,001 Ca ∑0,10 La, 0,15 Ce, 0,25 Y 0,00008 0,00016 0,00008 141
4 1·10-2 0,10 Ca ∑0,05 Pr, 0,10 Nd, 0,10 Ce, 0,15 Sc 0,00006 0,00010 0,00008 138
5 1·10-3 0,05 Mg 0,01 Sc 0,00010 0,00018 0,00010 128
6 5·10-4 0,05 Ca ∑0,15 Sc, 0,15 Y, 0,10 Ce 0,00007 0,00010 0,00007 135
7 1·10-3 ∑0,05 Ca, 0,05 Mg ∑0,15 La, 0,05 Ce, 0,15 Sc, 0,05 Y, 0,10 Pr 0,00008 0,00008 0,00006 142
8 Способ-прототип В атмосфере инертного газа 0,05 H2 - 0,00060 0,00060 0,00040 80
1·102

Источник поступления информации: Роспатент

Показаны записи 61-70 из 357.
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
Показаны записи 61-70 из 234.
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb7

Волокнистый композиционный материал с матрицей на основе ниобия

Изобретение относится к области металлургии, а именно к высокотемпературным композиционным материалам на основе ниобия, упрочненным оксидными волокнами, применяемым для изготовления конструкционных деталей авиационного назначения. Волокнистый композиционный материал содержит матрицу и...
Тип: Изобретение
Номер охранного документа: 0002568407
Дата охранного документа: 20.11.2015
+ добавить свой РИД