×
10.02.2015
216.013.2557

Результат интеллектуальной деятельности: ПОЛЫЕ УГЛЕРОДНЫЕ НАНОЧАСТИЦЫ, УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002541012
Дата охранного документа
10.02.2015
Аннотация: Группа изобретений относится к области нанотехнологий, в частности к технологиям получения углеродных наноструктур и наноматериалов для применения в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей, и касается полых углеродных наночастиц, углеродного наноматериала и способа его получения. Углеродная наночастица имеет средний размер не менее 5 нм и включает центральную внутреннюю полость и внешнюю замкнутую оболочку, охватывающую внутреннюю полость со всех сторон. При этом внешняя оболочка состоит из, по меньшей мере, пары отдельных углеродных слоев. Углеродный материал содержит смесь полых углеродных наночастиц, включающих центральную внутреннюю полость и внешнюю замкнутую оболочку, охватывающую внутреннюю полость со всех сторон. При этом внешняя оболочка состоит из, по меньшей мере, пары отдельных углеродных слоев, и одностенных и двустенных углеродных нанотрубок. Способ получения углеродного материала, состоящего из смеси полых углеродных наночастиц, и одностенных и двустенных углеродных нанотрубок, включает каталитическое разложение углеводородов при температуре 600-1200°C с получением смеси углеродных наночастиц, которую отделяют от газообразных продуктов и подвергают отжигу при температуре 1700-2400°C в атмосфере инертного газа. Изобретение обеспечивает получение новых углеродных наночастиц и наноматериалов, обладающих высокой прочностью при низком весе, которые могут использоваться для создания новых композитных легких и высокопрочных материалов. 3 н. и 1 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к углеродным наноструктурам, углеродным наноматериалам на основе углеродных наноструктур, технологиям получения углеродных наноматериалов, и может быть использовано для получения углеродных наноструктур и материалов, которые в свою очередь могут применяться в качестве подложек для нанесенных катализаторов, высокопрочных наполнителей и др.

Первая информация о таких наноструктурах, как нанотрубки, впервые появилась в 1991, а в настоящее время уже известно достаточно большое количество углеродных наноструктур.

Так, известны углеродные нановолокна - это наноструктура, состоящая из тонких нитей диаметром 3-15 микрон, образованных атомами углерода [Патент США №4 663 230, МПК D01F 9/127, D01F 9/12].

Известны также углеродные нанотрубки - углеродные волокна с отверстием, у которых стенка представляет собой, в основном, один слой атомов углерода [Патент США №5 424 054, МПК D01F 9/127, D01F 9/12].

Известны углеродные наноструктуры луковичной формы - нанолуковицы, образованные вложенными друг в друга углеродными сферами [Патент РФ №2094370].

Известен фуллерен - молекулярное соединение, принадлежащее классу аллотропных форм углерода, представляющее собой выпуклые замкнутые многогранники, составленные из четного числа трехкоординированных атомов углерода [Соколов В.И., Станкевич И.В. Фуллерены - новые аллотропные формы углерода: структура, электронное строение и химические свойства//Успехи химии, т.62 (5), с.455, 1993].

Известны и другие, не упомянутые здесь, углеродные наноструктуры и их количество постоянно растет. Часть углеродных наноструктур уже нашла применение в ряде отраслей промышленности в качестве добавок к различным материалам, изменяющим свойства этих материалов. Например, углеродные нановолокна придают композитным материалам такие свойства, как большая прочность, повышенная электро- и теплопроводимость, высокая ударная вязкость, а содержащие их полимеры используют для деталей автомобилей, аэропланов, экранов, защищающих от электромагнитного излучения и др. В связи с особыми свойствами углеродных наноструктур прогнозируется расширение сферы их применения в дальнейшем.

Поскольку применение разных углеродных наноструктур в различных отраслях деятельности человека позволяет получать исключительно хорошие результаты, которые невозможно было заранее предвидеть, существует настоятельная потребность в новых углеродных наночастицах и наноматериалах, в частности в наночастицах, имеющих высокую прочность при низком весе.

Изобретение решает задачу получения новых высокопрочных углеродных наночастиц и наноматериалов, обладающих высокой прочностью при низком весе, которые могу использоваться для создания новых композитных легких и высокопрочных материалов.

Поставленная задача решается тем, что предлагается углеродная наночастица, имеющая средний размер не менее 5 нм, включающая внутреннюю центральную полость и внешнюю замкнутую оболочку, охватывающую названную внутреннюю полость со всех сторон, причем названная внешняя оболочка состоит из, по меньшей мере, пары отдельных углеродных слоев.

Толщина внешней оболочки углеродной наночастицы, преимущественно, не превышает 20% ее размера.

Предлагается также углеродный наноматериал, содержащий вышеописанные наночастицы в смеси с одностенными и многостенными нанотрубками.

Предлагаемая углеродная наночастица изображена на Рис.1, где: 1 - центральная внутренняя полость, 2 - замкнутая оболочка, 3 - слои оболочки.

Частица на Рис.1 имеет пустую внутреннюю полость 1 и оболочку 2. Полость на рисунке показана довольно больших размеров, а оболочка 2 состоит из двух слоев углерода, расположенных почти концентрично. Однако частицы могут иметь центральную полость меньших размеров при большей толщине оболочки, состоящей из множества слоев углерода. Ее толщина может доходить до 20% размера частицы.

Фотография предлагаемого углеродного наноматериала приведена на Рис.2, где можно видеть полые углеродные наночастицы в смеси с нанотрубками.

Полые углеродные наночастицы получают в составе углеродного наноматериала, преимущественно путем каталитического разложения газообразных углеводородов с последующим высокотемпературным отжигом полученнного углеродного наноматериала.

Например, известен способ получения углеродных нанотрубок, в соответствии с которым в реакционной камере поддерживают температуру 500-1200°C и генерируют каталитический материал в форме пара, который далее конденсируется в объеме реакционной камеры с образованием свободных наночастиц катализатора, на поверхности которых образуются углеродные наноструктуры при разложении газообразных углеводородов [Патент США №8137653, МПК B01J 19/08, D01F9/127]. В этом способе образование паров вещества, содержащего катализатор, и наночастиц катализатора происходит непосредственно в объеме реакционной камеры. В этой же камере происходит и формирование углеродных наноструктур. Протекание таких разных по своей природе процессов в одном объеме затрудняет их контроль и оптимизацию. Соответственно, возникает проблема контроля свойств получаемых углеродных наноструктур. Этим способом получают в основном углеродные нанотрубки.

Углеродные полые наночастицы и углеродный наноматериал могут быть получены путем разложения в реакционной камере газообразных углеводородов в присутствии катализатора при температуре 600-1200°C и формирования углеродных наноструктур на поверхности названного катализатора. Для этого в реакционную камеру вводят смесь газообразных углеводородов и катализатор в форме свободных наночастиц в потоке газа - носителя. Сформированные на поверхности свободных наночастиц катализатора углеродные наноструктуры выводят из реакционной камеры в потоке газа и отделяют их от названного газа. Полученный таким образом углеродный материал состоит из углеродных нанотрубок, одностенных и двустенных, и наночастиц катализатора, покрытых аморфным углеродом в виде углеродной капсулы. Этот материал далее подвергают высокотемпературному отжигу при температуре 1700-2400°C. Отжиг может проводиться в вакууме или в атмосфере инертного газа из ряда: гелий, аргон, пеон, ксенон и др. При отжиге происходит выжигание вещества катализатора из углеродной капсулы. После выжигания получают углеродную наночастицу размером не менее 5 нм с пустой центральной полостью, которую со всех сторон охватывает углеродная оболочка, состоящая из слоев углерода. Центральная часть частицы - пустая, что отличает ее от нанолуковицы и обеспечивает ей небольшой вес. Оболочка может состоять из двух, трех, четырех, пяти и более слоев углерода. Каждый слой оболочки или большая их часть по своему строению подобен листу графена, принявшему замкнутую форму.

Поскольку частицы полые, а толщина оболочки составляет не более 20% их размера, они легкие, а их прочность довольно велика.

Как уже упоминалось выше, углеродный материал, который подвергают отжигу, изначально содержит, кроме закрытых углеродных капсул, одностенные и двустенные углеродные нанотрубки. Соответственно, отожженный наноматериал содержит полые углеродные наночастицы, а также одностенные и двустенные нанотрубки, как показано на Рис.2. Их количественное соотношение в составе материала может варьироваться и зависит от параметров процесса каталитического разложения газообразных углеводородов. Возможно подобрать параметры процесса таким образом, что содержание полых углеродных наночастиц в материале будет высоким - до 90%, а возможно - низким - менее 10%.

Получаемые полые частицы и содержащий их материал характеризуются повышенной прочностью и низким весом.

Пример 1

В камере испарения предварительно получают наночастицы, содержащие вещество катализатора. Камера испарения представляет собой объем, на дне которого расположены два электрода, выполненные в форме резервуаров, наполненных материалом, содержащим в своем составе вещество катализатора - железо (сталь марки Ст.3). Между электродами имеется стенка, в которой выполнен разрядный канал, концы которого подходят к этим электродам.

При подаче на электроды напряжения возникает дуговой разряд, проходящий в разрядном канале, через который пропускают плазмообразующий газ - азот в форме вихря, получаемого с помощью вихревой камеры, и в котором поддерживают ток 90 А. При этом происходит плавление стали в резервуарах электродов и ее испарение с образованием паров железа. Одновременно в камеру подают несущий газ, представляющий собой смесь водорода и азота в мольном соотношении 3/40. Пары железа в потоке несущего газа конденсируются в наночастицы. Затем несущий газ с наночастицами железа подают в узел смешения, куда также подают газообразный углеводород - метан, который предварительно нагревают до температуры 400°С. В результате перемешивания в узле смешения получают рабочую смесь.

Рабочую смесь нагревают до температуры 1100°С и подают в реакционную камеру, имеющую объем 1 м3 и диаметр 1 м. В реакционной камере поддерживают температуру 945°С. В результате каталитического разложения метана на наночастицах железа происходит рост углеродных нанотрубок. Продукты реакции пропускают через фильтр, где отделяют углеродный наноматериал от газа. Полученный наноматериал содержит наночастицы железа в углеродных оболочках из аморфного углерода и одностенные и двустенный нанотрубки. Далее этот материал подвергают отжигу при 2000°C в атмосфере аргона. Полученный после отжига углеродный материал состоит из полых частиц углерода размером 5-7 нм - 31% и упомянутых одностенных и двустенных нанотрубок - остальное.

Пример 2

То же, что в примере 1, но в реакционной камере поддерживают температуру 600°С. В результате каталитического разложения метана на одной части наночастиц железа происходит рост углеродных нанотрубок, а на другой - образуются оболочки из аморфного углерода. Продукты реакции выводят из реакционной камеры и пропускают через фильтр, где отделяют углеродные наноструктуры от отходящего газа. Полученный наноматериал содержит наночастицы железа в оболочках из аморфного углерода и одностенные и двустенный нанотрубки. Далее этот материал подвергают отжигу при 1700°C в атмосфере аргона. Полученный после отжига углеродный материал состоит из полых частиц углерода размером 5-12 нм - 76% и упомянутых одностенных и двустенных нанотрубок - остальное.

Пример 3

То же, что в примере 1, но в реакционной камере поддерживают температуру 1200°С. В результате каталитического разложения метана на одной части наночастиц железа происходит рост углеродных нанотрубок, а на другой образуются оболочки из аморфного углерода. Продукты реакции выводят из реакционной камеры и пропускают через фильтр, где отделяют углеродные наноструктуры от отходящего газа. Полученный наноматериал содержит наночастицы железа в оболочках из аморфного углерода и одностенные и двустенный нанотрубки. Далее этот материал подвергают отжигу при 2400°C в атмосфере аргона. Полученный после отжига углеродный материал состоит из полых частиц углерода размером 5-7 нм - 12% и упомянутых одностенных и двустенных нанотрубок - остальное.


ПОЛЫЕ УГЛЕРОДНЫЕ НАНОЧАСТИЦЫ, УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
ПОЛЫЕ УГЛЕРОДНЫЕ НАНОЧАСТИЦЫ, УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-16 из 16.
20.01.2016
№216.013.a1b1

Способ получения углеродных наноструктур и аппарат

Изобретения могут быть использованы при изготовлении композитов или катализаторов. В средстве 3 получают рабочую смесь 2 с температурой 400-1400°C, включающую наночастицы, содержащие вещество катализатора, несущий газ и газообразные углеводороды. Наночастицы, содержащие вещество катализатора,...
Тип: Изобретение
Номер охранного документа: 0002573035
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bd1e

Структура из углеродных нанотрубок

Изобретение может быть использовано при изготовлении добавок в смолы, керамику, металлы, смазочные материалы. Сначала смешивают наночастицы катализатора с потоком несущего газа, затем подают нагретый углеводород. Полученную рабочую смесь вводят в реакционную камеру, где углеводород разлагается...
Тип: Изобретение
Номер охранного документа: 0002573873
Дата охранного документа: 27.01.2016
13.01.2017
№217.015.76cf

Модификатор для приготовления наноструктурированных композитных материалов и способ получения модификатора

Изобретение может быть использовано при изготовлении катодных материалов для литий-ионных аккумуляторов, красок, грунтовок, клеев, бетонов, целлюлозных материалов. Модификатор для приготовления наноструктурированных композитных материалов включает одностенные, и/или двустенные, и/или...
Тип: Изобретение
Номер охранного документа: 0002598676
Дата охранного документа: 27.09.2016
29.12.2017
№217.015.fbf2

Способ функционализации углеродных нанотрубок кислородсодержащими группами

Изобретение относится к химической промышленности и может быть использовано при изготовлении нанокомпозитов. Углеродные нанотрубки обрабатывают электролитом в проточном электролизере, содержащем установленные в его внутреннем пространстве катод 10, анод 6 и пористую диафрагму 8, делящую...
Тип: Изобретение
Номер охранного документа: 0002638214
Дата охранного документа: 12.12.2017
17.02.2018
№218.016.2baf

Коаксиальный кабель

Изобретение относится к электротехнике, в частности - к коаксиальным кабелям, которые могут использоваться для передачи сигнала в различных областях техники: системах связи, вещательных сетях, компьютерных сетях, антенно-фидерных системах, автоматизированных системах управления и других...
Тип: Изобретение
Номер охранного документа: 0002643156
Дата охранного документа: 31.01.2018
20.02.2019
№219.016.bfd7

Способ получения энергии из угля

Изобретение относится к способу сжигания угля, включающему его сушку, размалывание до мелкодисперсного состояния, смешивание размолотого угля с направленным кислородсодержащим газовым потоком и сжигание, характеризующемуся тем, что размолотый уголь нагревают до температуры полукоксования не...
Тип: Изобретение
Номер охранного документа: 0002373259
Дата охранного документа: 20.11.2009
Показаны записи 31-38 из 38.
01.12.2019
№219.017.e975

Упрочненный стеклянный сосуд (варианты) и способ упрочнения стеклянного сосуда (варианты)

Изобретение относится к способу получения упрочненных стеклянных сосудов. По первому варианту на поверхность сосуда нанесен по крайней мере один упрочняющий слой, имеющий толщину 5-50 нм, содержащий диоксид олова или диоксид титана, и одностенные углеродные нанотрубки, при их содержании 0.05-1...
Тип: Изобретение
Номер охранного документа: 0002707612
Дата охранного документа: 28.11.2019
12.12.2019
№219.017.ec32

Способ получения высокопрочного композиционного материала на основе термопластичного полимера, модификатор для приготовления композиционного материала и способ получения модификатора для приготовления композиционного материала (варианты)

Изобретение относится к технологиям получения модификатора для приготовления композиционных материалов на основе термопластичных полимеров, содержащих в своем составе углеродные, стеклянные или базальтовые волокна и углеродные нанотрубки (варианты), а также к способам получения его, и...
Тип: Изобретение
Номер охранного документа: 0002708583
Дата охранного документа: 09.12.2019
05.02.2020
№220.017.fe14

Ткань с антистатическими свойствами

Изобретение относится к области получения материалов, рассеивающих электрический заряд, и может быть использовано для изготовления одежды с антистатическими свойствами специального назначения, применяемой в условиях возможного возникновения разряда статического электричества. Предложен...
Тип: Изобретение
Номер охранного документа: 0002712912
Дата охранного документа: 31.01.2020
25.03.2020
№220.018.0fbf

Способ получения углеродного материала, модифицированного хлором, и углеродный материал, модифицированный хлором, способ получения композиционного электропроводящего материала и электропроводящий композиционный материал

Изобретение относится к химической промышленности и нанотехнологии и может быть использовано при изготовлении композиционных полимерных материалов. По одному варианту углеродный материал (I), содержащий одностенные углеродные нанотрубки и не менее 50% углерода, приводят во взаимодействие с...
Тип: Изобретение
Номер охранного документа: 0002717516
Дата охранного документа: 23.03.2020
20.04.2023
№223.018.4acd

Дисперсия углеродных нанотрубок, способ приготовления дисперсии, катодная паста, способ изготовления катода и катод

Группа изобретений относится к способу приготовления дисперсии одностенных и/или двустенных углеродных нанотрубок и их агломератов, способу приготовления катодной пасты, катодной пасте, способу изготовления катода и катоду. Дисперсия содержит растворитель, большинство молекул которого...
Тип: Изобретение
Номер охранного документа: 0002777379
Дата охранного документа: 02.08.2022
20.04.2023
№223.018.4ad7

Водная дисперсия углеродных нанотрубок, способ приготовления дисперсии, катодная паста, анодная паста, способ изготовления катода, способ изготовления анода, катод и анод

Изобретение относится к водным дисперсиям одностенных и/или двустенных углеродных нанотрубок и их агломератов, к способам их приготовления, к использованию таких дисперсий для приготовления электродных паст, к электродным пастам, к электродам литий-ионных батарей и к способам изготовления...
Тип: Изобретение
Номер охранного документа: 0002777040
Дата охранного документа: 01.08.2022
21.04.2023
№223.018.5004

Способ получения лигатуры для приготовления композиционных материалов на основе алюминия или алюминиевых сплавов (варианты)

Изобретение относится к металлургии и может быть использовано для получения упрочненных алюминиевых материалов путем литейных технологий. Лигатуру получают путем помещения углеродных нанотрубок в полость герметичной алюминиевой оболочки, затем путем создания вакуума в полости герметичной...
Тип: Изобретение
Номер охранного документа: 0002746701
Дата охранного документа: 19.04.2021
23.04.2023
№223.018.51f3

Лигатура для приготовления композиционных материалов на основе алюминия или алюминиевых сплавов и способ получения лигатуры (варианты)

Изобретение относится к области цветной металлургии и может быть использовано для приготовления композиционных материалов на основе алюминия или алюминиевого сплава с использованием литейных технологий. Лигатура содержит алюминий и углеродные нанотрубки (УНТ), поверхность которых...
Тип: Изобретение
Номер охранного документа: 0002734316
Дата охранного документа: 15.10.2020
+ добавить свой РИД