×
10.02.2015
216.013.243f

Результат интеллектуальной деятельности: ЯЧЕИСТЫЙ ТЕПЛОЗВУКОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения теплоизоляционного материала. Указанный технический результат достигается тем, что ячеистый теплозвукоизоляционный материал получают из смеси, включающей углеродсодержащий газообразователь - сажу 0,5-1 мас.%, тонкомолотый стекловидный материал в количестве 99-99,5 мас.%, который содержит более 79% стеклофазы и в количестве от 5 до 20% кристаллической фазы с размером частиц менее 0,5 мкм. 1 табл.
Основные результаты: Смесь для получения ячеистого теплозвукоизоляционного материала включает углеродсодержащий газообразователь и тонкомолотый стекловидный материал, отличающаяся тем, что стекловидный материал в количестве 99-99,5 мас.%, который содержит более 79% стеклофазы и в количестве от 5 до 20% кристаллической фазы с размером частиц менее 0,5 мкм, сажа 0,5-1 мас.%.

Изобретение относится к строительным материалам и может быть использовано в строительстве зданий и сооружений, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения теплоизоляционного материала.

Пеностекольные материалы являются одними из высокоэффективных, которые обладают влагостойкостью, негорючестью, технологичностью и относятся к экологически безопасным. Известно, что звукопоглощающее пеностекло, которое получается с использованием карбонатных газообразователей, имеет структуру сообщающихся пор. В пористых поглотителях звук гасится за счет вязкого трения воздуха о стенки пор и превращении части звуковой энергии вследствие этого в теплоту. Недостатком такого пеностекла является высокое водопоглощение более 50% по объему. Теплоизоляционное пеностекло, которое получается с использованием углеродсодержащих газообразователей, имеет структуру замкнутых пор, что значительно снижает водопоглощение (менее 3-5%). Однако при этом теплоизоляционное пеностекло имеет невысокую звукопоглощающую способность. Коэффициент звукопоглощения пеностекла с малым водопоглощением в интервале частот 80-800 Гц характеризуется величиной 0,03-0,06 и для 800-3000 Гц 0,06-0,14. Коэффициент звукопоглощения пеностекла с большим водопоглощением в интервале частот 640-500 Гц составляет 0,38-0,74 [Шилл Ф. Пеностекло, М., Издательство литературы по строительству, 1965. - 308 с.].

Теплоизоляционное пеностекло, как правило, не применяют в качестве звукопоглощающего слоя в конструкциях облицовок внутренних поверхностей помещений и шумозащитных сооружений. В то же время теплоизоляционное пеностекло с закрытыми порами, характеризующееся определенными акустическими характеристиками и физико-механическими показателями, можно использовать в качестве звукоизоляционного [ГОСТ 23499-2009. Материалы и изделия звукоизоляционные и звукопоглощающие строительные].

Известна композиция для изготовления теплозвукоизоляционных изделий [RU 2014306, МПК C04B 28/14, C04B 38/00, 16.06.1994], которая содержит, мас.%: гипсоцементнопуццолановое вяжущее 17,24-17,91; перлитовый песок, гидрофобизированный метилсиликонатом натрия 15,25-16,47; стекловолокно 1,15-1,19; вода - остальное. Полученные изделия характеризуются плотностью 254-267,5 кг/м3, пределом прочности при изгибе 0,25-0,26 МПа, коэффициентом звукопоглощения 0,64-0,66 относительно ед., теплопроводностью в эксплуатационных условиях 0,069-0,072 Вт (м К). Недостатком данной композиции является сложность многокомпонентного состава и высокая степень влагонасыщения образцов в условиях эксплуатации (более 6%).

Известен огнестойкий пористый теплозвукоизоляционный материал [RU 2344109, МПК C04B 38/0, C04B 40/00, 25.04.2007], получаемый из сырьевой смеси, включающей, мас.%: волокнистый материал 2,5-2,8; тонкомолотый неорганический наполнитель 0,3; смачиватель СВ-102 0,5; гидрофобизирующий и связывающий компонент ГКЖ-94 0,4; жидкая дисперсионная среда - вода 96,3-96,7. Данный теплозвукоизоляционный материал, состоящий преимущественно из закрытых пористых ячеек, является огнестойким, негорючим, стойким к механическим и химическим воздействиям, имеет максимальную рабочую температуру 1000°C и коэффициент теплопроводности 0,029-0,036 Вт/м·К. Недостатком этого состава и способа получения является изначально высокое содержание воды в количестве 96,3-96,7%, что предполагает ее удаление и представляет собой энергетически затратную операцию.

Наиболее близким к предлагаемому решению по технической сущности является пеностекло, обладающее повышенными звукопоглощающими свойствами [RU 2266874 C03C 11/00, 30.04.2002], которое получено из шихты, включающей стекло, карбонатный газообразователь, дополнительно карбонатную крупку с размером частиц 0,5-2,5 мм и оксид железа при следующем соотношении компонентов, мас.%: карбонатный газообразователь 0,5-5,0; карбонатная крупка 1,0-10,0; оксид железа 0,5-7,0; стекло остальное. Заявленное пеностекло оптимального состава имеет следующие характеристики: объемная масса 165 кг/м3, водонасыщение 4,8 мас.%, индекс изоляции воздушного шума 82 дБ. Недостатком данной шихты является сложный состав газообразователя, а именно три компонента, один из которых должен иметь определенный гранулометрический состав (0,5-2,5 мм), что предполагает дополнительную технологическую операцию подготовки путем отсева определенной фракции на ситах. Кроме того, основным компонентом шихты (78-98,5 мас.%) являются отходы стекольной промышленности, бой тарного и листового стекла, бой ампульного и кинескопного стекла. Данные виды стеклобоя имеют разные составы и вязкостные характеристики, поэтому их нельзя использовать в смешанном виде, а отдельно взятого стеклобоя, ввиду отсутствия централизованного сбора в России, нет в достаточных для производства пеностекла количествах. Отходы стекольной промышленности полностью используются на стекольных предприятиях, что позволяет снизить его энерго- и материальные затраты. Недостатком состава данной шихты также является использование карбонатного газообразователя, который приводит к образованию открытых пор, что сказывается на водопоглощении образцов. Поэтому водонасыщение образцов по данным патента составляет от 4,8 до 18,9 мас.%.

Задача изобретения заключается в улучшении звукоизолирующих характеристик, а именно в повышении индекса изоляции воздушного шума и снижении значения водопоглощения теплоизоляционного пеностекольного материала.

Технический результат достигается тем, что ячеистый теплозвукоизоляционный материал включает углеродсодержащий газообразователь и тонкомолотый стекловидный материал. Стекловидный материал в количестве 99-99,5 мас.%, сажа 0,5-1 мас.%. Стекловидный материал содержит более 79 мас.% стеклофазы и в количестве от 5 до 20 мас.% кристаллической фазы с размером частиц менее 0,5 мкм.

Кристаллическая фаза влияет на формирование ячеек несферической формы, что улучшает звукоизоляционные свойства материала, и повышает механическую прочность межпоровой перегородки. При этом субмикронный размер частиц кристаллической фазы не влияет на водопоглощение материала, значение которого не превышает 2,5 мас.%.

Пример конкретного выполнения.

Стекловидный материал, являющийся сырьем для изготовления теплозвукоизоляционного пеностекла, получают следующим способом. Подготавливают фракцию высококремнеземистого сырья с содержанием SiO2 более 60 мас.% путем прогрева при температуре 200-450°C. Затем добавляют кальцинированную соду в количестве 12-16 мас.%. Смесь смешивают и компактируют на валковом прессе. Термообработка компактированной шихты в интервале температур 900-950°C позволяет получить стекловидный материал, фазовый состав которого по данным рентгенофазового анализа представлен стекловидной фазой и остаточным количеством кристаллической фазы. Измельченный стеклогранулят до удельной поверхности не менее 5000 см2/г перемешивают с 0,5 мас.% газообразователя - сажи, загружают в металлические формы и вспенивают при температурах 800-850°C. Скорость нагрева до температуры вспенивания составляет 400-450°C/ч, выдержка при конечной температуре 15-20 мин. Вспененный материал охлаждают 12-14 ч.

Сущность изобретения поясняется таблицей, в которой приведены результаты измеренных свойств и индекса изоляции воздушного шума полученных образцов. Для оценки звукоизолирующих свойств образцов использована стандартная установка, состоящая из генератора звуковых волн и звукоприемника. Индекс изоляции воздушного шума оценивался по СниП 11-12-77 путем измерения степени поглощения звуковых волн нормативных частот (63, 125, 250, 500, 1000, 2000,4000 и 8000 Гц).

Как видно из табл. 1, полученный материал обладает повышенными значениями индекса изоляции и низким водопоглощением. При этом в качестве газообразователя используется одна сажа, по сравнению с аналогом, получаемым с применением трехкомпонентного газообразователя.

Смесь для получения ячеистого теплозвукоизоляционного материала включает углеродсодержащий газообразователь и тонкомолотый стекловидный материал, отличающаяся тем, что стекловидный материал в количестве 99-99,5 мас.%, который содержит более 79% стеклофазы и в количестве от 5 до 20% кристаллической фазы с размером частиц менее 0,5 мкм, сажа 0,5-1 мас.%.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 145.
20.08.2014
№216.012.e994

Способ измерения угловой скорости вращения трехфазного асинхронного электродвигателя

Изобретение относится к измерительной технике и может быть использовано в электроприводах для измерения угловой скорости вращения в установившихся и переходных режимах. Способ заключается в измерении мгновенных значений фазных токов i, i и напряжений u, u на фазах А и В, подводимых к статору,...
Тип: Изобретение
Номер охранного документа: 0002525604
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ea88

Система зажигания

Изобретение относится к области транспорта и может быть использовано для выработки импульсов высокого напряжения, образующих искру между электродами свечей зажигания и распределения высоковольтных импульсов по цилиндрам двигателя в необходимой последовательности. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002525848
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed3d

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией...
Тип: Изобретение
Номер охранного документа: 0002526552
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee4a

Способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого...
Тип: Изобретение
Номер охранного документа: 0002526821
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
Показаны записи 41-50 из 237.
27.09.2013
№216.012.6e63

Цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный...
Тип: Изобретение
Номер охранного документа: 0002493910
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6f30

Способ получения поливинилацетатной дисперсии

Изобретение относится к способу получения поливинилацетатной дисперсии и может быть использовано в химической промышленности. Способ получения поливинилацетатной дисперсии (ПВАД) включает эмульсионную полимеризацию винилацетата, полимеризацию проводят в присутствии водорастворимого радикального...
Тип: Изобретение
Номер охранного документа: 0002494115
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703d

Способ определения платины в водных растворах методом хронопотенциометрии

Изобретение направлено на определение платины в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494384
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.703e

Способ определения золота в водных растворах методом хронопотенциометрии

Изобретение направлено на определение золота в водных растворах методом хронопотенциометрии и может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения ионов металлов включает определение...
Тип: Изобретение
Номер охранного документа: 0002494385
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7086

Устройство для моделирования статического синхронного компенсатора

Изобретение относится к области моделирования объектов электрических систем. Техническим результатом является обеспечение всережимного моделирования в реальном времени и на неограниченном интервале процессов, протекающих в статическом синхронном компенсаторе. Устройство для моделирования...
Тип: Изобретение
Номер охранного документа: 0002494457
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70b8

Материал для поглощения электромагнитных волн

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала. Для этого материал для...
Тип: Изобретение
Номер охранного документа: 0002494507
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fe

Способ определения оптимальной скорости резания

Способ относится к обработке твердосплавными режущими инструментами группы применяемости К в виде режущих пластин и заключается в том, что сначала проводят измерение температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением...
Тип: Изобретение
Номер охранного документа: 0002494839
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7439

Устройство для разбраковки металлических изделий

Изобретение относится к области неразрушающего контроля изделий и может быть использовано для контроля физико-химических свойств поверхностных слоев металла контролируемого изделия, подвергнутого термической или химикотермической обработке, а также для выявления степени пластической деформации....
Тип: Изобретение
Номер охранного документа: 0002495410
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.743a

Способ определения таллия в водных растворах методом хронопотенциометрии

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения таллия в водных растворах методом хронопотенциометрии заключается том, что таллий (I) переводят в растворе в гидроокисное...
Тип: Изобретение
Номер охранного документа: 0002495411
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.745b

Способ диагностики состояния асинхронного электродвигателя

Изобретение относится к средствам диагностики электрических машин и может быть использовано для контроля состояния асинхронного электродвигателя. Способ диагностики состояния асинхронного электродвигателя включает предварительную фиксацию порогового значения интегральной оценки асинхронного...
Тип: Изобретение
Номер охранного документа: 0002495444
Дата охранного документа: 10.10.2013
+ добавить свой РИД