×
27.01.2015
216.013.20fb

СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии тонких пленок, в частности к способу формирования равномерных по толщине пленок оксида церия (CeO) на подложках сложной пространственной конфигурации, и может быть использовано для создания равномерных по толщине пленок оксида церия при решении ряда задач нанотехнологии, энергосберегающих технологий, в электронной, атомной и других областях науки и техники. Способ включает магнетронное распыление металлической мишени церия в рабочей камере в атмосфере, содержащей инертный газ и кислород, и осаждение на подложку слоя оксида церия, при этом подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени R, превышающем глубину зоны термализации L распыленных атомов мишени, при соотношении R/L в диапазоне 1,2÷1,5. Техническим результатом изобретения является формирование равномерных по толщине покрытий оксида церия на подложках сложной пространственной конфигурации. 2 ил., 1 пр.
Основные результаты: Способ осаждения тонких пленок оксида церия, включающий магнетронное распыление металлической мишени церия в рабочей камере, в атмосфере, содержащей инертный газ и кислород, и осаждение на подложку слоя оксида церия, отличающийся тем, что подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени, превышающем глубину зоны термализации распыленных атомов мишени при соотношении R/L в диапазоне 1,2÷1,5, где R - расстояние мишень-подложка, L - глубина зоны термализации.
Реферат Свернуть Развернуть

Изобретение относится к технологии тонких пленок, в частности к способу формирования равномерных по толщине пленок оксида церия (CeO2) на подложках сложной пространственной конфигурации. Под термином подложки «сложной пространственной конфигурации» имеется в виду наличие у поверхности подложки зон, находящихся в области геометрической тени относительно источника (мишени) распыленных атомов. При использовании ионно-плазменного распыления это достигается регулированием режима транспорта распыленных атомов Ce в промежутке дрейфа мишень-подложка и может быть использовано для создания равномерных по толщине пленок оксида церия при решении ряда задач нанотехнологии, энергосберегающих технологий, в электронной, атомной и других областях науки и техники. Изобретение направлено на разработку способа ионно-плазменного нанесения тонких пленок оксида церия и повышение его технологической гибкости применительно к получению тонкопленочных покрытий на протяженные подложки сложной пространственной конфигурации.

Изобретение может быть использовано при напылении тонкопленочных структур оксида церия, как на постоянном токе, так и при высокочастотном напылении.

Одним из известных методов осаждения пленок оксидов металлов является метод магнетронного распыления [Данилин Б.С., Сырчин В.К. Магнетронные распылительные системы. М.: Радио и связь. 1982. 73 с.], он позволяет контролируемым образом, варьируя технологические параметры процесса, изменять условия осаждения и наносить с высокой скоростью роста пленки с заданными электрофизическими свойствами.

При осаждении пленок на подложки сложной пространственной конфигурации формирование их свойств определяется технологическими параметрами процесса осаждения.

Наиболее близким по технической сущности к заявляемому решению является способ ионно-плазменного нанесения тонких пленок в вакууме, основанный на перемещении или вращении подложки в различных направлениях [Данилин Б.С. Применение низкотемпературной плазмы для нанесения тонких пленок. М.: Энергоатомиздат. 1989. 328 с.]. Он заключается в том, что для заданного формирования равномерных по толщине пленок на подложки сложной пространственной конфигурации держатель подложек перемещается или вращается в различных направлениях по заданному алгоритму.

Указанный способ обладает рядом недостатков: сложностью конструкции и низкой технологической гибкостью метода. Сложность конструкции распылительной камеры обусловлена наличием привода перемещения в зоне распыления и сложной системы расположения подложек. Низкая технологическая гибкость связана с тем, что для изменения скорости распыления мишени необходимо изменять алгоритм системы крепления подложек. Вместе с тем перемещение системы расположения подложек, даже в одном технологическом цикле, приводит к кратковременному прерыванию процесса осаждения, связанному с режимом зажигания газового разряда, и, как следствие, к образованию негативного переходного слоя между осаждаемыми слоями. Эти эффекты, связанные с перемещением подложек, делают невозможным реализацию наноразмерных слоев и возможность создания покрытий с равномерным распределением по толщине, необходимых для ряда задач нанотехнологии.

Задачей настоящего изобретения является разработка способа осаждения тонких пленок оксида церия, позволяющего в одном технологическом цикле получать пленки с равномерным распределением по толщине на подложках сложной пространственной конфигурации.

Достигаемым техническим результатом изобретения является формирование равномерных по толщине покрытий оксида церия на подложках сложной пространственной конфигурации.

Технический результат достигается тем, что проводят магнетронное распыление металлической мишени церия в рабочей камере в атмосфере, содержащей инертный газ и кислород, при этом подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени, превышающем глубину зоны термализации распыленных атомов мишени при соотношении R/L в диапазоне 1,2÷1,5, где R - расстояние мишень-подложка, L - глубина зоны термализации.

Сущность предлагаемого способа заключается в следующем. Анализ процессов рассеяния при столкновении атомных частиц в области давлений, характерных для процесса ионно-плазменного распыления, показывает, что нетермализованные атомы распыляемой мишени, сталкиваясь с атомами рабочего газа (аргон или кислородосодержащая атмосфера), достигают поверхности анода, практически сохраняя направленное движение и энергию, полученные ими в плоскости мишени. Направленные потоки термализованных атомов распыляемой мишени достаточно быстро убывают, и их перенос на анод и подложку обеспечивается диффузионными потоками. Величина диффузионных потоков распыленных атомов определяется градиентом плотности термализованных распыленных атомов, граница термализации которых существенным образом зависит как от соотношения масс атомов распыляемой мишени и атомов рабочего газа, так и от начальной энергии распыленных атомов, определяемой энергией связи атомов мишени [Вольпяс В.А., Козырев А.Б. Термализация атомных частиц в газах. // ЖЭТФ. 2011, т.140, вып.1(7), с.196-204.]. Таким образом, в зависимости от состава и давления рабочего газа (которые определяют длину свободного пробега распыленных атомов относительно упругих столкновений), на малых расстояниях от мишени, подложка бомбардируется направленным потоком распыленных атомов мишени со средней энергией 2…10 эВ (масштаб энергий связи атомов мишени). При расстояниях от мишени, превышающих глубину зоны термализации распыленных атомов, на поверхность подложки диффузионными потоками осуществляется доставка атомов распыляемой мишени с энергией ~0.1 эВ (температура атомной подсистемы газоразрядной плазмы). При этом угловое распределение атомов распыляемой мишени, перешедших в диффузионный режим движения, на расстояниях от мишени, превышающих границу зоны термализации, имеет практически изотропный характер. Таким образом, это приводит к их доставке практически на всю поверхность подложки сложной пространственной конфигурации, расположенной вне зоны термализации распыленных атомов мишени.

Сущность изобретения поясняется представленными чертежами: фиг.1 - конструкция магнетронной распылительной системы, где 1 - рабочая камера, 2 - подложка сложной пространственной конфигурации, 3 - зона термализации распыленных атомов мишени, 4 - магнитная система, 5 - мишень, 6 - анод; фиг.2 - неравномерность толщины осажденного слоя оксида церия по радиусу подложки при различных соотношениях R к L.

Рассмотрим суть изобретения при распылении мишени из церия (Ce), поясняющего сущность заявляемого способа. В диапазоне малых давлений рабочего газа (~ до 2 Па) граница зоны термализации L распыленных атомов Ce превышает длину пространства дрейфа мишень-подложка R<L. Поэтому в этом диапазоне малых давлений рабочего газа (~ до 5 Па) наблюдается существенная неравномерность толщины пленки h оксида церия по радиусу подложки r, расположенной в центре магнетронной распылительной системы.

При увеличении давления рабочего газа граница зоны термализации L распыленных атомов Ce становится соизмеримой с длиной пространства дрейфа мишень-подложка R≈L и распределение толщины пленки h(r) оксида церия по радиусу подложки становится более равномерным. Это обусловлено тем, что при увеличении давления рабочего газа длина зоны термализации L для распыленных атомов Ce уменьшается и становится соизмеримой с длиной пространства дрейфа мишень-подложка R.

В диапазоне высоких давлений рабочего газа (~ более 10 Па) граница зоны термализации L распыленных атомов Ce становится меньше длины пространства дрейфа мишень-подложка R>L. При этом распределение толщины пленки h(r) оксида церия по радиусу подложки становится практически равномерным. Но при увеличении давления рабочего газа достаточно быстро уменьшается скорость доставки распыленных атомов Ce на подложку, поэтому необходимо выбирать оптимальное соотношение величины давления рабочего газа и длины пространства дрейфа мишень-подложка.

Пример конкретной реализации способа

Подложку сложной пространственной конфигурации 1 (фиг.1) размещают в центре анода 6 (фиг.1) на оси магнетронной распылительной системы вне зоны термализации распыленных атомов мишени 3 (фиг.1) и при заданном расстоянии мишень-подложка R выбирают величину давления рабочего газа, соответствующую соотношению R/L≈1.2…1.5. Соотношение R/L из указанного диапазона выбирается из заданной величины неравномерности толщины Δh/h осаждаемой пленки оксида церия. Осаждение оксида церия осуществляется методом магнетронного распыления металлической мишени Ce (99,9%) при давлении 8 Па в среде аргона и кислорода. Расход аргона и кислорода составляет 40 см3/мин и 35 см3/мин соответственно. Соотношение длины пространства дрейфа мишень-подложка к зоне термализации в процессе распыления равняется R/L=1.4. В этих условиях были синтезированы пленки оксида церия с неравномерностью по толщине Δh/h=3%.

Таким образом, заявленный способ позволяет получать равномерные по толщине пленки оксида церия на подложках сложной пространственной конфигурации.

Способ осаждения тонких пленок оксида церия, включающий магнетронное распыление металлической мишени церия в рабочей камере, в атмосфере, содержащей инертный газ и кислород, и осаждение на подложку слоя оксида церия, отличающийся тем, что подложку размещают на аноде в области зоны активного распыления мишени на расстоянии от мишени, превышающем глубину зоны термализации распыленных атомов мишени при соотношении R/L в диапазоне 1,2÷1,5, где R - расстояние мишень-подложка, L - глубина зоны термализации.
СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ
СПОСОБ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 42.
20.05.2013
№216.012.406d

Способ получения фотонно-кристаллических структур на основе металлооксидных материалов

Изобретение относится к технологии опто- и микроэлектроники и может быть использовано для получения опалоподобных структур. Способ получения фотонно-кристаллических структур на основе металлооксидных материалов включает заполнение темплата, состоящего из монодисперсных микросфер полистирола,...
Тип: Изобретение
Номер охранного документа: 0002482063
Дата охранного документа: 20.05.2013
20.09.2013
№216.012.6bef

Способ изготовления стали с упрочняющими наночастицами

Изобретение относится к порошковой металлургии, а именно к способу получения стали, содержащей наноразмерные частицы боридов, оксидов, нитридов. Может использоваться для изготовления элементов деталей для хранения отработавшего ядерного топлива, чехлов тепловыделяющих сборок (ТВС) ядерных...
Тип: Изобретение
Номер охранного документа: 0002493282
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7339

Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев

Изобретение относится к области атомного и химического машиностроения, а именно к способам нанесения покрытий для защиты деталей от водородной коррозии. Технический результат - повышение работоспособности, надежности и увеличение долговечности деталей с покрытием. Способ включает обезжиривание...
Тип: Изобретение
Номер охранного документа: 0002495154
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.7578

Способ получения консолидированных порошковых материалов

Изобретение относится к порошковой металлургии, в частности к технологии получения объемных ультрадисперсных и наноматериалов путем электроимпульсной консолидации порошков. Может использоваться при изготовлении изделий с высокими прочностными характеристиками. Предварительную очистку порошка...
Тип: Изобретение
Номер охранного документа: 0002495732
Дата охранного документа: 20.10.2013
10.01.2014
№216.012.959c

Способ нелинейного трехмерного многораундового преобразования данных dozen

Изобретение относится к вычислительной технике и электросвязи, предназначено для решения задач защиты компьютерной информации, может использоваться при построении генераторов псевдослучайных чисел, а также криптографических примитивов хеширования, блочного и поточного шифрования. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002503994
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.95c2

Способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов

Изобретение относится к области ядерной энергетики и может быть использовано в технологии производства спеченных керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов. Для прессования таблеток используют смесь порошка диоксида урана, приготовленного по одной из...
Тип: Изобретение
Номер охранного документа: 0002504032
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.992c

Способ итеративного криптографического преобразования данных

Изобретение относится к вычислительной технике и электросвязи, предназначено для решения задач защиты компьютерной информации. Наиболее предпочтительной областью использования изобретения является построение генераторов псевдослучайных чисел (ГПСЧ), а также криптографических примитивов...
Тип: Изобретение
Номер охранного документа: 0002504911
Дата охранного документа: 20.01.2014
20.07.2014
№216.012.df01

Устройство для определения количества единиц в упорядоченном двоичном числе

Изобретение относится к вычислительной технике, в частности к устройствам обработки данных, и может быть использовано для построения средств автоматики, функциональных узлов систем управления. Техническим результатом является упрощение устройства за счет использования однотипных элементов,...
Тип: Изобретение
Номер охранного документа: 0002522875
Дата охранного документа: 20.07.2014
Показаны записи 1-10 из 45.
20.09.2013
№216.012.6bef

Способ изготовления стали с упрочняющими наночастицами

Изобретение относится к порошковой металлургии, а именно к способу получения стали, содержащей наноразмерные частицы боридов, оксидов, нитридов. Может использоваться для изготовления элементов деталей для хранения отработавшего ядерного топлива, чехлов тепловыделяющих сборок (ТВС) ядерных...
Тип: Изобретение
Номер охранного документа: 0002493282
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7339

Способ нанесения на металлическую деталь комплексного покрытия для защиты детали от водородной коррозии, состоящего из множества микрослоев

Изобретение относится к области атомного и химического машиностроения, а именно к способам нанесения покрытий для защиты деталей от водородной коррозии. Технический результат - повышение работоспособности, надежности и увеличение долговечности деталей с покрытием. Способ включает обезжиривание...
Тип: Изобретение
Номер охранного документа: 0002495154
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.7578

Способ получения консолидированных порошковых материалов

Изобретение относится к порошковой металлургии, в частности к технологии получения объемных ультрадисперсных и наноматериалов путем электроимпульсной консолидации порошков. Может использоваться при изготовлении изделий с высокими прочностными характеристиками. Предварительную очистку порошка...
Тип: Изобретение
Номер охранного документа: 0002495732
Дата охранного документа: 20.10.2013
10.01.2014
№216.012.959c

Способ нелинейного трехмерного многораундового преобразования данных dozen

Изобретение относится к вычислительной технике и электросвязи, предназначено для решения задач защиты компьютерной информации, может использоваться при построении генераторов псевдослучайных чисел, а также криптографических примитивов хеширования, блочного и поточного шифрования. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002503994
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.95c2

Способ изготовления керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов

Изобретение относится к области ядерной энергетики и может быть использовано в технологии производства спеченных керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов. Для прессования таблеток используют смесь порошка диоксида урана, приготовленного по одной из...
Тип: Изобретение
Номер охранного документа: 0002504032
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.992c

Способ итеративного криптографического преобразования данных

Изобретение относится к вычислительной технике и электросвязи, предназначено для решения задач защиты компьютерной информации. Наиболее предпочтительной областью использования изобретения является построение генераторов псевдослучайных чисел (ГПСЧ), а также криптографических примитивов...
Тип: Изобретение
Номер охранного документа: 0002504911
Дата охранного документа: 20.01.2014
20.07.2014
№216.012.df01

Устройство для определения количества единиц в упорядоченном двоичном числе

Изобретение относится к вычислительной технике, в частности к устройствам обработки данных, и может быть использовано для построения средств автоматики, функциональных узлов систем управления. Техническим результатом является упрощение устройства за счет использования однотипных элементов,...
Тип: Изобретение
Номер охранного документа: 0002522875
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df42

Способ изготовления токоснимающей фольги и токоснимающая фольга суперконденсаторов

Изобретение относится к области электротехники, а именно к способу изготовления токоснимающей фольги суперконденсатора с двойным электрическим слоем (КДЭС). Техническим результатом изобретения является повышение мощности суперконденсатора за счет снижения паразитного контактного сопротивления...
Тип: Изобретение
Номер охранного документа: 0002522940
Дата охранного документа: 20.07.2014
+ добавить свой РИД