×
20.01.2015
216.013.1fb0

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9; рений - 3,0-5,0; цирконий - 4,0-6,0; церий - 0,2-0,6; лантан - 0,1-0,5; иттрий - 0,3-0,7; алюминий - 2,0-4,0; борид титана - 10,0-12,5; нитрид бора - 10,0-12,5; Co - остальное. Изобретение позволяет увеличить микротвердость, адгезионную прочность и коррозионную стойкость покрытий. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к прецизионным сплавам, предназначенным для реализации микрометаллургических процессов, конкретно к сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса.

Сплавы на основе кобальта, в силу своих широких эксплуатационных возможностей, весьма популярны в микрометаллургии для получения порошковых материалов, защитных пленок и покрытий.

Прежде всего, кобальтовые сплавы, особенно в тонких сечениях, имеют преимущества в части высоких физико-механических свойств, в т.ч. по одной из важнейших характеристик - микротвердости.

В частности, известны сплавы для получения порошков, а также перспективные кобальтовые сплавы для получения быстрозакаленных сплавов и покрытий методами распыления расплава и газотермического напыления, в частности, составы которых приведены в Таблице 1. Следует особо отметить, что каждая из перечисленных групп сплавов разрабатывалась с учетом специфических особенностей их технологического использования.

В связи с существенным ужесточением условий эксплуатации элементов конструкций в направлении увеличения механических нагрузок (циклическое, динамическое и эрозионное воздействие), расширением интервала рабочих температур в области положительных и отрицательных значений и необходимостью увеличения коррозионной стойкости при воздействии агрессивных химических реагентов, современные функциональные покрытия должны иметь следующие основные технические характеристики:

- адгезионная прочность покрытия с подложкой не менее 30 МПа;

- микротвердость покрытия не менее 3 ГПа;

- диапазон рабочих температур от -60 до +500°C;

- коррозионная стойкость не ниже 3-4 балла (класс стойкости 2; 3).

Ни один из известных сплавов не позволяет получать функциональные покрытия с такими характеристиками. Экспериментально установлено, что наилучшими характеристиками обладают покрытия, полученные из кобальтовых сплавов, химический состав которых приведен в патентах [1-2], микротвердость этих покрытий достигает 1,7 ГПа. Поэтому для удовлетворения современных требований к функциональным покрытиям необходимо разработать новые составы сплава, адаптированные к условиям получения покрытий методами гетерофазного переноса.

В качестве прототипа выбран прецизионный сплав на основе кобальта для изготовления высокопрочных аморфных материалов в виде лент методом высокоскоростной закалки расплава [3].

Сплав имеет следующий состав (масс. %): железо 1,8-4, никель 6,2-8, бор 8-10, кремний 10-12, церий 0,6-1,2, иттрий 0,2-0,8, хром 2-3,5, цирконий 0,5-1,5, кобальт - остальное.

Недостатками покрытия, полученного с использованием данного сплава, являются: низкая микротвердость покрытий (менее 3 ГПа), недостаточная адгезионная прочность покрытия с подложкой (менее 30 МПа), низкая коррозионная стойкость, не превышающая 3-4 балла, и не достигается требуемого интервала рабочих температур от -60 до +500°C.

Техническим результатом изобретения является повышение микротвердости получаемых покрытий, адгезионной прочности и коррозионной стойкости до требуемых значений, а также увеличение диапазона рабочих температур.

Технический результат достигается за счет того, что сплав на основе кобальта, содержащий хром, кремний, цирконий, иттрий, церий, в соответствии с изобретением, с целью увеличения микротвердости, адгезионной прочности покрытий, коррозионной стойкости и расширения интервала температурной стабильности в области положительных и отрицательных температур, дополнительно содержит рений, лантан, алюминий, борид титана и нитрид бора. Причем хром и кремний вводят в сплав в виде устойчивого интерметаллического соединения Cr3Si, а вводимые в сплав частицы TiB2 и BN имеют размер 30-80 нм. Соотношение компонентов в сплаве следующее (масс.%):

Cr - 17,4-21,1; Si - 2,6-4,9; Re - 3,0-5,0; Zr - 4,0-6,0; Ce - 0,2-0,6; La - 0,1-0,5; Y - 0,3-0,7; Al - 2,0-4,0; TiB2 - 10,0-12,5; BN - 10,0-12,5; Co - основа.

В соответствии с изобретением, оптимальное соотношение между TiB2 и BN в сплаве составляет 1:1.

В качестве базовой композиции выбрана тройная система Co-Cr-Si. Причем наибольший эффект повышения микротвердости, как показали эксперименты, достигается при введении в основу (кобальт) 20-26% устойчивого интерметаллида Cr3Si, что соответствует содержанию в сплаве 17,4-21,1% Cr и 2,6-4,9% Si. В зависимости от вида термомеханической обработки микротвердость чистого кобальта достигает 1,6-2,1 ГПа, для покрытий эта величина, как правило, не превышает 1,8 ГПа. При введении устойчивого интерметаллида Cr3Si наблюдается существенное повышение микротвердости сплава до 3,6 ГПа.

Содержание интерметаллида Cr3Si в количестве 20-26% является оптимальным, т.к. при меньшем, чем 20%, требуемого эффекта повышения микротвердости не наблюдается, а при большем, чем 26%, сплав становится хрупким и при получении покрытия отслаивается от подложки.

Для достижения требуемого высокого уровня функциональных свойств, в тройной сплав системы Co-Cr-Si последовательно вводится рений, цирконий и алюминий.

Введение рения в количестве 3-5% обеспечивает повышения температурной стабильности до 520-550°C по сравнению с 340-360°C для тройного сплава Co-Cr-Si. Этот эффект наблюдается, начиная с 3% Re, а при содержании Re более 5%, так же как и при введении интерметаллида Cr3Si более 26%, наблюдается охрупчивание сплава и покрытий на его основе.

Указанный четырехкомпонентный сплав Co-Cr-Si-Re устойчив в области отрицательных температур только до -40°C. При более низких температурах происходит отслаивание покрытий из этого сплава от подложки. Для повышения хладостойкости до требуемых -60°C (обеспечивающих эксплуатацию элементов конструкций в условиях крайнего Севера и Арктики), в сплав дополнительно вводится цирконий (в количестве 4-6%), эффективно способствующий измельчению зерна и тем самым повышающий хладостойкость. Этот эффект наблюдается, начиная с 4% Zr, и реализуется до 6% Zr, при этом в сплаве снижается эффект, достигнутый за счет введения Re, т.е снижается до 420-430°C температурная стабильность сплава при положительных температурах.

Однако коррозионная стойкость сплава системы Co-Cr-Si-Re-Zr не превышает 3-4 балла (класс стойкости 2; 3). Практика показывает, что в сплав в этом случае необходимо ввести элемент, образующий на поверхности функционального покрытия пассивирующие пленки. Наиболее эффективно это достигается за счет введения алюминия, образующего на поверхности сплава пассивирующие пленки сложного состава Cr2O3-Al2O3. Это достигается при оптимальном количестве алюминия в сплаве от 2,0 до 4,0%.

Прецизионность любого микрометаллургического процесса эффективно обеспечивается за счет комплексного введения эффективных модификаторов в виде малых добавок редкоземельных элементов, имеющих наибольшее сродство к кислороду, водороду и азоту - соответственно церия, лантана и иттрия.

Введение указанных малых добавок очищает сплав от неметаллических включений и обеспечивает протекание устойчивых процессов нанесения покрытий. Это возможно при комплексном введении указанных редкоземельных элементов (РЗЭ) в количестве, не превышающем в сумме 1,8%. Экспериментально установлено, что поэлементное содержание церия должно быть (0,2-0,6)%, лантана (0,1-0,5)%, иттрия (0,3-0,7)%, при большем количестве каждого из указанных РЗЭ и их суммарном содержании более 1,8% образуются фазы, негативно влияющие на стабильность протекания микрометаллургических процессов. Образование неметаллических фаз приводит к неоднородности структуры, прежде всего к появлению многочисленных границ раздела, это приводит к возможности питтинговой коррозии и уменьшению микротвердости на межфазных границах. Экспериментально установлено, что эти явления приводят к возникновению микротрещин, которые, в свою очередь, могут приводить к разрушению покрытия в целом в ходе эксплуатации. Поэтому указанное выше комплексное введение РЗЭ и их суммарное содержание не более 1,8% является оптимальным, так как метастабильные фазы не образуются и, соответственно, удается достичь требуемых характеристик с точки зрения коррозионной стойкости, микротвердости и, как следствие, адгезионной прочности и интервала температурной стабильности.

Однако, как показали испытания, получить указанные выше требуемые свойства из сплава системы Co-Cr-Si-Re-Zr-Ce-La-Y-Al не удается. Имеет место низкая адгезия (адгезионная прочность покрытия с подложкой на отрыв штифтовым методом не превышает 20,6 МПа) и относительно низкое значение микротвердости (не более 3,6 ГПа). Практика и проводимые исследования [4] показывают, что наиболее эффективным для повышения указанных характеристик является введение в металлическую матрицу наноразмерных (фракция 30-80 нм) частиц из тугоплавких химических соединений.

Практика показывает, что наибольшего упрочняющего эффекта при создании функциональных покрытий можно достичь при комплексном введении наноматериалов разных классов, имеющих различную кристаллографическую структуру (например, бориды и нитриды, оксиды и нитриды, нитриды и карбиды и т.д.). Это приводит к существенной фрагментации матричной структуры, возникновению остаточных сжимающих напряжений на межфазных границах и, как следствие, значительному увеличению микротвердости сплава.

Исходя из этого установлено, что оптимальным для сплава системы Co-Cr-Si является введение боридов в сочетании с нитридами. Конкретно оптимальный эффект увеличения микротвердости достигается при введении 20-25% (TiB2+BN) при соотношении между ними 1:1. При этом адгезионная прочность покрытия с подложкой достигает 30-35 МПа, а микротвердость повышается до 4,6 ГПа.

При меньшем количестве вводимых дисперсных частиц и другом фракционном составе эффект увеличения микротвердости незначителен. При большем количестве вводимых дисперсных частиц сплав существенно охрупчивается.

Пример 1

Выплавка сплава осуществляется с помощью высококачественной установки типа УИП16-10-003 в алундовых тиглях N4. Последовательность введения компонентов следующая: (Co+Cr+Si)→Zr→Al→Re→(Ce-La-Y)→(TiB2+BN). Состав сплава (масс.%): Cr - 17,4; Si - 2,6; Re - 3,0; Zr - 4,0; Ce - 0,2; La - 0,1; Y - 0,3; Al - 2,0; TiB2 - 10,0; BN - 10,0; Co - остальное.

После получения слитка производилось его дробление до фракции 5-7 мм с помощью щековой дробилки типа ДЩ-4. Оптимальной фракцией для получения покрытий методом гетерофазного переноса с помощью установки микроплазменного напыления типа УГНП-3/3350 является фракция исходного материала 50-80 мкм. Дробление до указанной фракции производилось на дезентиграторной установке типа Дези-1А при скоростях вращения роторов 7200 об/мин. Из полученного порошка с помощью метода микроплазменного напыления на подложку пластины из стали Х18Н10Т толщиной 5 мм было нанесено функциональное покрытие толщиной 150±20 мкм.

Микротвердость покрытия, измеренная на установке Nanoscan, составила 4,2 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C - 3,6 и 4,0 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 35 МПа.

Пример 2

Выплавка сплава производилась так же как в примере 1. Состав сплава (масс.%): Cr - 21,1; Si - 4,9; Re - 5,0; Zr - 6,0; Ce - 0,6; La - 0,5; Y - 0,3; Al - 2,0; TiB2 - 12,5; BN - 12,5; Co - остальное.

После получения слитка производилось дробление слитка до фракции 40-60 мкм на дезинтеграторе типа Дези-15 при скоростях вращения роторов 12000 об/мин.

Из полученного порошка с помощью метода сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3 на подложку пластины из стали Х15Ю5 шириной 100 мм и толщиной 3 мм было нанесено функциональное покрытие толщиной 100±10 мкм.

Микротвердость покрытия, измеренная, как в примере 1, составляет 4,6 ГПа при комнатной температуре, при воздействии температур -196°C и +400°C 3,0 и 4,2 ГПа соответственно. Коррозионная стойкость сплава при воздействии 12% раствора HCl соответствует 2-3 классу стойкости. Адгезионная прочность покрытия с подложкой составляет 32 МПа.

Источники информации

1. RU 2352663, МПК C22C 19/07, опубликовано 20.04.2009.

2. RU 2333990, МПК С22С 19/07, С22С 30/00, опубликовано 20.09.2008.

3. RU 2273680, МПК С22С 19/07, опубликовано 10.04.2006 - прототип.

4. Горынин И.В., Бурханов Г.С., Фармаковский Б.В. Перспективы разработок конструкционных материалов на основе тугоплавких металлов и соединений. // Вопросы материаловедения. - 2012. - СПб. №2. - 5 с.

Источник поступления информации: Роспатент

Показаны записи 191-200 из 265.
21.07.2018
№218.016.7349

Комплекс средств оперативно-командной связи и передачи данных

Изобретение относится к области автоматики, управления и организации оперативно-командной связи и передачи данных в объектах и между объектами автоматизированных систем управления. Технический результат - дополнительные режимы работы комплекса по передаче данных и прослушиванию голосовой...
Тип: Изобретение
Номер охранного документа: 0002661796
Дата охранного документа: 19.07.2018
28.07.2018
№218.016.768a

Высотный дирижабль

Изобретение относится к области воздухоплавания. Высотный дирижабль имеет полужесткую конструкцию, внутреннюю и внешнюю оболочки, прослойка между которыми наполнена воздухом, внутренняя оболочка разделена на отсеки и наполнена несущим газом. Имеются два продольных боковых жестких элемента,...
Тип: Изобретение
Номер охранного документа: 0002662593
Дата охранного документа: 26.07.2018
19.08.2018
№218.016.7d43

Двухканальная акустическая форсунка

Изобретение относится к области энергетики и предназначено для подачи газообразного топлива и газовых компонентов в камеру сгорания воздушно-реактивных двигателей. Двухканальная акустическая форсунка для распиливания газообразного топлива содержит полый цилиндрический корпус с патрубками...
Тип: Изобретение
Номер охранного документа: 0002664489
Дата охранного документа: 17.08.2018
01.09.2018
№218.016.81f8

Корпус для микросистем измерения силы тока

Использование: для датчиков тока. Сущность изобретения заключается в том, что корпус для микросистем измерения силы тока, содержащий крышку и сопрягаемые между собой две части корпуса: основание и вставку, верхняя поверхность основания выполнена с углублением для размещения компонентов...
Тип: Изобретение
Номер охранного документа: 0002665491
Дата охранного документа: 30.08.2018
19.01.2019
№219.016.b1f5

Способ сварки трением с перемешиванием алюминиевых заготовок переменной толщины

Изобретение может быть использовано при изготовлении сварных конструкций из алюминиевых полуфабрикатов переменной толщины методом сварки трением с перемешиванием. В процессе сварки проводится пошаговый контроль температуры поверхности сварного шва позади сварочного инструмента. При фиксировании...
Тип: Изобретение
Номер охранного документа: 0002677559
Дата охранного документа: 17.01.2019
20.02.2019
№219.016.c227

Гидроакустический приемоизлучающий тракт

Заявлен гидроакустический приемоизлучающий тракт, содержащий блок управления 1, соединенный со вторыми входами блока индикации 2 и основного усилителя 3, а также с синтезатором 4, выходы которого соединены со вторыми входами n смесителей 5-6, а также через n каналов, состоящих каждый из...
Тип: Изобретение
Номер охранного документа: 0002453861
Дата охранного документа: 20.06.2012
20.02.2019
№219.016.c24e

Гидроцилиндр с механическим затвором в крайних положениях поршня

Изобретение относится к области судостроения, машиностроения и касается вопроса создания движительно-рулевых подъемных, винторулевых и подруливающих комплексов с фиксацией полного, высшего положения механизма в крайнем положении. Гидроцилиндр с механическим замком в крайних положениях поршня...
Тип: Изобретение
Номер охранного документа: 0002458817
Дата охранного документа: 20.08.2012
20.02.2019
№219.016.c258

Способ получения деминерализованного костного матрикса в виде крошки

Изобретение относится к медицине, а именно к способу получения деминерализованного костного матрикса в виде крошки. Способ получения деминерализованного костного матрикса в виде крошки, включающий измельчение кости, обработку фрагментов кости раствором Tween-80, удаление детергента, обработку...
Тип: Изобретение
Номер охранного документа: 0002456003
Дата охранного документа: 20.07.2012
23.02.2019
№219.016.c712

Экономнолегированная хладостойкая высокопрочная сталь

Изобретение относится к области металлургии, а именно к высокопрочным хладостойким конструкционным сталям, используемым для изготовления сосудов высокого давления, применяемых для хранения сжатых газов (воздуха) в широком диапазоне температур, в том числе на Крайнем севере. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002680557
Дата охранного документа: 22.02.2019
06.03.2019
№219.016.d2d6

Хладостойкая свариваемая arc-сталь повышенной прочности

Изобретение относится к области металлургии, а именно к производству листового проката из хладостойкой arc-стали повышенной прочности и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, машиностроении, мостостроении и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002681094
Дата охранного документа: 04.03.2019
Показаны записи 191-200 из 217.
20.01.2018
№218.016.1183

Образец для испытаний сотового заполнителя

Изобретение относится к исследованию прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники. Образец включает два одинаковых блока сотового заполнителя с приклеенными к их...
Тип: Изобретение
Номер охранного документа: 0002634020
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
09.06.2018
№218.016.5a31

Многослойный магнитный и электромагнитный экран для защиты от излучения силовых кабелей

Изобретение относится к многослойным покрытиям, используемым в радиоэлектронной и приборостроительной технике, в частности, при создании экранов для защиты от воздействия внешних магнитных и электромагнитных полей естественного и искусственного происхождения различных биологических и...
Тип: Изобретение
Номер охранного документа: 0002655377
Дата охранного документа: 28.05.2018
17.08.2018
№218.016.7c48

Способ получения сотового тонкостенного энергопоглотителя с помощью лазерного спекания

Изобретение относится к технологии получения сотовых тонкостенных энергопоглотителей. Энергопоглотитель изготавливают в виде ячеистой конструкции с ячейками произвольной формы из металлического порошка дисперсностью менее 50 мкм путем его послойного 20-40 мкм лазерного сплавления по заранее...
Тип: Изобретение
Номер охранного документа: 0002664010
Дата охранного документа: 14.08.2018
+ добавить свой РИД