×
20.01.2015
216.013.1eb3

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтепереработке и каталитической химии, в частности к способу синтеза катализатора для дегидрирования легких парафиновых углеводородов, предпочтительно изобутана и изопентана, для процессов получения изобутилена и изоамиленов - мономеров синтетических каучуков. Описан способ приготовления катализатора, заключающийся в пропитке продукта термохимической активации гидраргиллита активными компонентами при микроволновом излучении с рабочей частотой 2,45 ГГц и мощностью 180-900 Вт в течение 3-30 мин с последующей сушкой в электромагнитном поле сверхвысокочастотного диапазона и прокалке при температуре от 600 до 800°C. Техническим результатом предлагаемого изобретения является повышение производительности способа, высокая механическая прочность и термостабильность катализатора, а также повышение каталитических свойств. 2 табл., 4 пр.
Основные результаты: Способ получения катализатора для дегидрирования парафиновых углеводородов путем пропитки продукта термохимической активации гидраргиллита растворами соединений хрома и щелочного металла, последующей сушкой электромагнитным излучением и прокаливанием катализатора, отличающийся тем, что стадию пропитки осуществляют под действием электромагнитного излучения при рабочей частоте 2,45 ГГц и мощности 180-900 Вт в течение 3-30 мин.

Изобретение относится к области нефтепереработки и каталитической химии, в частности к способу синтеза катализатора для дегидрирования легких парафиновых углеводородов, предпочтительно изобутана и изопентана, для процессов получения изобутилена и изоамиленов - мономеров синтетических каучуков.

Известен пропиточный метод синтеза катализатора дегидрирования парафинов, который заключается в пропитке алюмооксидного носителя с заданными свойствами раствором активных компонентов и промотора и последующей термообработкой (сушкой и прокалкой катализатора). Стадию сушки проводят традиционным способом в лабораторных условиях - на песчаной бане или в сушильном шкафу, в промышленности - в аппарате с мешалкой, снабженном паровой рубашкой [Каримов О.Х. Исследование процесса сушки алюмохромового катализатора в электромагнитном поле СВЧ-диапазона / Каримов О.Х., Даминев P.P., Касьянова Л.З., Каримов Э.Х., Вахитова P.P. // Нефтегазовое дело: электронный научный журнал. - №4, 2013. - 291-301 http://www.ogbus.ru/authors/KarimovOKh/KarimovOKh_l.pdf].

Недостатком сушки конвективным методом являются высокие энергетические затраты, связанные с подведением тепла в зону реакции, а также длительность стадии сушки.

Известен способ получения оксидных катализаторов, заключающийся в смешении двух или более солей-предшественников компонентов катализатора, плавлении полученной смеси до однородного расплава, охлаждении расплава до комнатной температуры, разложения расплава солей на оксиды под действием микроволнового излучения и последующей прокалкой [Патент РФ №2301705 C1, B01J 37/34, B01J 35/12, B01J 23/10, B01J 23/70, опубл. 27.06.2007].

Известен плазмохимический способ получения алюмохромового катализатора для дегидрирования углеводородов. Данный способ включает термическую обработку исходных реагентов, взятых в виде порошков алюминия и карбонила хрома в потоке воздушной микроволновой низкотемпературной плазмы, при этом реагенты подают в поток воздушной плазмы и реактор раздельно в виде аэрозоля с газом-носителем аргоном [Патент РФ №2347613 C1, B01J 37/34, B01J 21/04, B01J 23/26, B82B 3/00, опубл. 27.02.2009]. Либо для получения алюмохромового катализатора в потоке микроволновой плазмы сплавляются оксиды алюминия и хрома [Патент РФ №231.8597 от 10.03.2008].

Недостатком данных способов является техническая сложность проведения процесса, включающего, в том числе, дополнительные стадии окислительной обработки реагентами сплавленного катализатора, упаривание избытка реагента, сушки и прокаливания катализатора.

Известен способ приготовления катализатора для дегидрирования парафиновых углеводородов методом пропитки [Патент РФ 2432203 C1, B01J 23/26, B01J 21/04, B01J 23/02, B01J 23/745, B01J 21/10, C07C 5/333, опубл. 27.10.2011]. Процесс получения катализатора включает пропитку продукта термохимической активации гидраргиллита растворами соединений хрома, щелочного металла, железа, кальция, магния, сушку и прокаливание при температуре 650-800°C. Преимущественно пропитку осуществляют одновременно всеми компонентами катализатора по влагоемкости при температуре 20-50°C.

Недостатком указанного способа является длительность стадий пропитки и сушки, проводимой при 120°C, которая составляет до 4 часов, что обуславливает высокие энергетические затраты.

Наиболее близким техническим решением к заявляемому способу приготовления катализатора является способ, основанный при применении электромагнитного излучения СВЧ-диапазона на стадии сушки алюмохромового катализатора [Каримов О.Х., Даминев P.P., Касьянова Л.З., Каримов Э.Х. Применение СВЧ-излучения при приготовлении металлоксидных катализаторов // Фундаментальные исследования. - 2013. - №4. - С.801-805]. Катализатор, пропитанный раствором активных компонентов, сушат под действием электромагнитного излучения с целью интенсификации процесса сушки.

Недостатком данного способа является длительность стадии пропитки катализатора, обусловленная диффузионными процессами на поверхности катализатора. Продолжительность пропитки, обеспечивающей равномерное распределение соединений хрома и калия, может достигать 1 часа.

Задачей, решаемой в изобретении, является разработка способа получения катализатора для дегидрирования парафиновых углеводородов, который улучшает физико-химические и каталитические свойства катализатора и повышает производительность его приготовления пропиточным методом посредством интенсификации стадии пропитки носителя раствором активных компонентов.

Для решения поставленной задачи в способе приготовления катализатора для дегидрирования парафиновых углеводородов путем пропитки продукта термохимической активации гидраргиллита растворами соединений хрома и щелочного металла, последующей сушкой электромагнитным излучением и прокаливанием катализатора, согласно изобретению стадию пропитки осуществляют под действием электромагнитного излучения при рабочей частоте 2,45 ГГц и мощности 180-900 Вт в течение 3-30 мин.

Продукт термохимической активации гидраргиллита, являющийся носителем для катализатора и предшественником оксида алюминия, получают дегидратацией в условиях импульсного нагрева гидраргиллита Al(OH)3. Продукт обладает высокой реакционной способностью и легко гидратируется в присутствии водной или парофазной среды с образованием гидроксида алюминия структуры AlOOH. Такое соединение обладает повышенной реакционной способностью, в результате которой становится возможной пропитка носителя на основе продукта термохимической активации гидраргиллита соединениями активных компонентов катализатора. В результате пропитки соединения хрома и щелочного металла не только равномерно распределены в оксиде алюминия, но и связаны химически с соединением алюминия. Применение СВЧ-воздействия на гетерогенные катализаторы в процессе их приготовления позволяет в ряде случаев получить катализаторы с более равномерным распределением частиц. Так, обработка электромагнитным полем высушенного катализатора синтеза окиси этилена позволяет получить высокодисперсное распределение ионов серебра на поверхности катализатора [Патент US 8017546 от 13.09.2011].

В процессе пропитки носителя в электромагнитном поле носитель нагревается до 110°C, что ускоряет диффузию активных компонентов на поверхности катализатора. Сушка катализатора проводится в результате воздействия электромагнитного поля СВЧ-диапазона. Предпочтительно использование СВЧ-излучения с частотой 2,45 ГГц. Мощность излучения составляет 10-2000 Вт, предпочтительно 180-900 Вт, продолжительность излучения составляет до 30 минут до полного удаления водного растворителя из катализатора.

В результате приготовления катализатора в электромагнитном поле СВЧ-диапазона максимальное время операций пропитки и сушки катализатора сокращается с 4 часов до 1 часа. Установлено также, что алюмохромовый катализатор, приготовленный данным способом, имеет высокие каталитические показатели (активность и селективность), механическую прочность и термическую стабильность.

Полученный катализатор испытывают в лабораторном реакторе на 50 см3 в процессах дегидрирования изопентана при температуре 550°C, при объемной скорости подачи изопентана - 1 час-1 (по жидкости). Каталитический цикл состоит из реакционной фазы, при которой углеводороды подаются в течение 30 минут; фазы продувки азотом в течение 10 минут для освобождения катализатора от адсорбционных продуктов реакции дегидрирования; фазы регенерации, когда в регенератор подается газ регенерации воздух в течение 30 минут, при температуре 650°C.

При анализе катализаторов используют следующие методы исследования.

Термическую стабильность катализатора проверяют использованием экспресс-методики путем прокаливания при температуре 800°C в течение 4 часов. Прочность на истирание определяют по массовой доле потерь при истирании частиц катализатора. Метод основан на разрушении частиц катализатора в кипящем слое и измерении массы частиц, унесенных потоком воздуха, скорость которого стабилизована.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу).

Для приготовления катализатора соединение алюминия (продукт термохимической активации гидраргиллита) в виде микросферического порошка пропитывают при постоянном перемешивании раствором, содержащим хромовый ангидрид и калийную щелочь. Все компоненты берут в таких количествах, чтобы обеспечить после прокаливания состав катализатора, мас.% (в пересчете на оксиды): оксид хрома (в пересчете на Cr2O3) 13,0; оксид щелочного металла 2; оксид алюминия - остальное. Пропитку осуществляют при комнатной температуре в течение 1 часа, затем проводят сушку в электромагнитном поле частотой 2,45 ГГц, мощность облучения 900 Вт 3 минуты. Высушенный катализатор прокаливают при температуре 660°C в течение 6 часов. Физико-химические и каталитические свойства катализатора представлены в таблице 1. Сравнительные результаты термической стабильности катализаторов представлены в таблице 2.

Пример 2.

Катализатор готовят аналогично примеру 1, с тем отличием, что пропитку раствором активных компонентов ведут под действием электромагнитного поля частотой 2,45 ГГц, мощность излучения 180 Вт в течение 5 минут. Физико-химические и каталитические свойства катализатора представлены в таблице 1. Сравнительные результаты термической стабильности катализаторов представлены в таблице 2.

Пример 3.

Катализатор готовят аналогично примеру 1, с тем отличием, что пропитку раствором активных компонентов ведут под действием электромагнитного поля частотой 2,45 ГГц, мощность излучения 180 Вт в течение 10 минут. Высушенный катализатор прокаливают при температуре 700°C в течение 6 часов. Физико-химические и каталитические свойства катализатора представлены в таблице 1. Сравнительные результаты термической стабильности катализаторов представлены в таблице 2.

Пример 4.

Катализатор готовят аналогично примеру 3, с тем отличием, что пропитку раствором активных компонентов ведут под действием электромагнитного поля 22 минуты. Физико-химические и каталитические свойства катализатора представлены в таблице 1. Сравнительные результаты термической стабильности катализаторов представлены в таблице 2.

Таблица 1
Физико-химические и каталитические свойства катализатора
Наименование показателей Пример 1 Пример 2 Пример 3 Пример 4
Прочность на истирание, % 90,1 92,0 92,1 91,2
Содержание в катализаторе Cr+6, масс.% 4,7 5,2 4,8 4,3
Активность* катализатора в процессе 44,6 48,1 43,0 40,1
дегидрирования изопентана, %
Селективность* катализатора в процессе дегидрирования изопентана, % 82,1 87,1 80,6 82,5
* Каталитические показатели по выходу непредельных углеводородов C5.

Таблица 2
Результаты экспресс-методики по определению термостабильности катализаторов
Образец катализатора Содержание Cr6+, масс.% Потери Cr6+ после прокалки, %
Исходное После прокалки 800°С 4 час
Пример 1 4,8 3,0 25,9
Пример 2 5,2 4,3 24,8
Пример 3 4,8 3,7 23,0
Пример 4 4,3 3,4 25,2

Способ получения катализатора для дегидрирования парафиновых углеводородов путем пропитки продукта термохимической активации гидраргиллита растворами соединений хрома и щелочного металла, последующей сушкой электромагнитным излучением и прокаливанием катализатора, отличающийся тем, что стадию пропитки осуществляют под действием электромагнитного излучения при рабочей частоте 2,45 ГГц и мощности 180-900 Вт в течение 3-30 мин.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 118.
20.12.2014
№216.013.1376

Способ получения аллобетулина

Изобретение относится к способу получения аллобетулина (19β,28-эпокси-18α-олеанан-3β-ола) путем изомеризации бетулина под действием кислотного агента в органическом растворителе, при чем изомеризацию осуществляют в хлороформе под действием сильнокислотного катионита Амберлист 15, содержащего в...
Тип: Изобретение
Номер охранного документа: 0002536405
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.148f

Способ получения 3-(хлорметил)-3-(алкоксиметил)оксетанов

Изобретение относится к органической химии, конкретно к способу получения 3-(хлорметил)-3-(алкоксиметил)оксетанов, заключающемуся в том, что проводят алкилирование 3,3-бис(хлорметил)оксетана алифатическими спиртами в присутствии катамина АБ в качестве катализатора в течение 4 часов при...
Тип: Изобретение
Номер охранного документа: 0002536687
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1516

Способ управления процессом полимеризации этиленпропиленовых синтетических каучуков

Изобретение относится к способу управления по показателям качества в производстве этиленпропиленовых каучуков на основе моделей расчета показателей качества, которые адаптируются к текущему технологическому режиму. Способ обеспечивает оперативную адаптацию модели под изменяющиеся характеристики...
Тип: Изобретение
Номер охранного документа: 0002536822
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1704

Способ получения 5-(хлорметил)-5-(алкоксиметил)-1,3-диоксанов

Изобретение относится к органической химии, конкретно к способу получения 5-(хлорметил)-5-(алкоксиметил)-1,3-диоксанов, заключающемуся в том, что проводят алкилирование 5,5-бис(хлорметил)-1,3-диоксана алифатическими спиртами в присутствии катамина АБ в качестве катализатора в течение 4 часов...
Тип: Изобретение
Номер охранного документа: 0002537320
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17f8

Способ получения амина

Изобретение относится к усовершенствованному способу получения аминов взаимодействием дихлорэтана и аммиака. Получаемый в результате взаимодействия раствор аминогалогеногидрата обрабатывают щелочью с последующим выпариванием и ректификацией. Сточную воду, представляющую собой легкую фракцию,...
Тип: Изобретение
Номер охранного документа: 0002537564
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c0b

Способ получения цис-2,3-диалкоксиметил-1,1-дихлорциклопропанов

Изобретение относится к способу получения цис-2,3-диалкоксиметил-1,1-дихлорциклопропанов, которые широко применяют в органическом синтезе, а также как высокотемпературные растворители и компоненты лакокрасочных материалов. Способ заключается в том, что проводят реакцию дихлоркарбенирования...
Тип: Изобретение
Номер охранного документа: 0002538607
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c0c

Топливная композиция

Изобретение относится к топливной композиции для дизельных двигателей, включающей среднедистиллятное жидкое топливо и присадку, повышающую цетановое число, при этом присадка представляет собой алкилнитратсодержащий продукт нитрования фракции НК-195°C кубового остатка продукта...
Тип: Изобретение
Номер охранного документа: 0002538608
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c9d

Способ получения (4е)-тридец-4-ен-1-илацетата

Изобретение относится к области органической химии, в частности к способу получения (4E)-тридец-4-ен-1-илацетата. (4E)-Тридец-4-ен-1-илацетат является половым феромоном томатной моли (Keiferia lycopersicella), опасного вредителя пасленовых культур. Результаты изобретения могут быть использованы...
Тип: Изобретение
Номер охранного документа: 0002538753
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1de5

Буровой раствор

Изобретение относится к нефтедобывающей промышленности. Технический результат - получение бурового раствора, обладающего низкими показателями величины статического напряжения сдвига и водоотдачи, высокими значениями вязкости и солестойкости, высокой термо- и ферментативной устойчивостью при...
Тип: Изобретение
Номер охранного документа: 0002539081
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ded

Способ и система автоматизированного определения и регистрации твердости горной породы забоя в процессе бурения скважины

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является оптимизация процесса бурения скважины. Способ включает воздействие на горную породу и ее разрушение вращающимся и находящимся под нагрузкой индентором,...
Тип: Изобретение
Номер охранного документа: 0002539089
Дата охранного документа: 10.01.2015
Показаны записи 31-40 из 161.
27.12.2013
№216.012.909a

Установка для определения кинетики карбонизации бетона

Изобретение относится к области исследования физико-химических свойств бетона в условиях воздействия на образец углекислого газа заданной концентрации. Установка содержит не менее 2-х герметичных камер с заполненной водой U-образной трубкой для сброса избыточного давления в камере, впускным и...
Тип: Изобретение
Номер охранного документа: 0002502711
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9125

Конический ребристый купол покрытия вертикального цилиндрического резервуара

Изобретение относится к области строительства, в частности к купольным покрытиям вертикальных цилиндрических резервуаров. Технический результат изобретения заключается в снижении материалоемкости и трудоемкости изготовления и монтажа купола. Купольная крыша образована путем сопряжения двух...
Тип: Изобретение
Номер охранного документа: 0002502850
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.93a7

Устройство для перемешивания в жидкой среде

Изобретение относится к устройствам для перемешивания в жидкой среде и может быть использовано на предприятиях нефтехимической, фармацевтической и пищевой промышленности. Устройство включает корпус с размещенным в нем валом, внутри которого установлен с возможностью поступательно-возвратного...
Тип: Изобретение
Номер охранного документа: 0002503493
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.93ca

Способ диффузионной сварки на воздухе с наложением циклической нагрузки

Изобретение может быть использовано при изготовлении аппаратов для нефтегазопереработки и сварки технологических трубопроводов. После механической обработки поверхностей деталей их покрывают защитной консервирующей смазкой и соединяют между собой обработанными поверхностями. Осуществляют нагрев...
Тип: Изобретение
Номер охранного документа: 0002503528
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9458

Способ получения сложного эфира монохлоруксусной кислоты, содержащего 1,3-диоксановый заместитель

Изобретение относится к органической химии, а именно к получению хлорорганических эфиров, содержащих в своем составе 1,3-диоксановый заместитель, которые используют в сельском хозяйстве в качестве пестицидов. Способ получения сложного эфира монохлоруксусной кислоты, содержащего 1,3-диоксановый...
Тип: Изобретение
Номер охранного документа: 0002503670
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9582

Способ коррекции характеристик измерительных преобразователей

Изобретение относится к измерительной технике. Способ заключается в выделении в преобразователе каналов измерения основной и дополнительной (влияющей) входных величин, градуировке каналов измерительного преобразователя при различных комбинациях значений его входных величин, формировании по...
Тип: Изобретение
Номер охранного документа: 0002503968
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9860

Способ заглубления трубопровода до проектных отметок

Изобретение относится к трубопроводному транспорту. Способ включает вскрытие трубопровода с одной стороны траншеи ниже проектной глубины с созданием выемки. Затем происходит заглубление трубопровода до проектных отметок под действием силы тяжести и перемещения грунтов (супесь, песок) в сторону...
Тип: Изобретение
Номер охранного документа: 0002504707
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9ef1

Шпиндель забойного двигателя

Изобретение относится к буровой технике, а именно к забойным двигателям для бурения скважин. Шпиндель включает корпус, дроссель и вал со сквозным осевым каналом, установленный в корпусе с возможностью осевого перемещения в пределах гарантированного люфта. Между тремя уплотненными радиальными...
Тип: Изобретение
Номер охранного документа: 0002506397
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9faf

Способ определения предельной растяжимости цементных штукатурных составов

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении. Сущность: величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением...
Тип: Изобретение
Номер охранного документа: 0002506587
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a42d

Ростстимулирующее средство для предпосевной обработки семян

Изобретение относится к химии азотсодержащих гетероциклических соединений, а именно к производным несимметричных триазинонов, которые могут быть использованы в сельском хозяйстве. Ростстимулирующее средство в качестве основного активного компонента содержит соединение гетероциклического ряда -...
Тип: Изобретение
Номер охранного документа: 0002507744
Дата охранного документа: 27.02.2014
+ добавить свой РИД