×
10.01.2015
216.013.1e1d

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ РЕЗЬБОВОЙ ПОВЕРХНОСТИ ДЕТАЛИ ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия. При этом подготовку поверхности под нанесение покрытия совмещают с упрочняющей обработкой, проводя ее в следующей последовательности: погружают деталь в электролит, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, при этом обеспечивают режим электролитно-плазменного полирования резьбовой поверхности, а после электролитно-плазменной обработки резьбовой поверхности детали помещают в вакуумную камеру установки для ионно-имплантационной обработки, проводят ионную очистку ионами аргона при энергии от 6 до 8 кэВ и ионно-имплантационную обработку поверхности детали ионами иттербия или азота, а затем в этой же установке ионно-плазменным методом наносят износостойкое покрытие из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм. Технический результат: повышение эксплуатационных свойств резьбовых поверхностей деталей. 21 з.п. ф-лы, 1 пр.

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах.

Известен способ получения упрочненного слоя на резьбовой поверхности детали из металлов или сплавов лазерным излучением [патент РФ №2047661, МПК C21D 1/09. СПОСОБ ОБРАБОТКИ РЕЗЬБОВОГО ИЗДЕЛИЯ], включающий поверхностную лазерную закалку впадины зубьев. Лазерной закалке подвергают также поверхность выступов зубьев в режиме оплавления. Недостатком известного способа является необходимость использования высокоточного дорогостоящего оборудования и относительно низкая производительность процесса обработки резьбовых поверхностей. При этом с уменьшением размеров резьбовых поверхностей требования к точности обработки таких деталей, как детали ролико-винтовых пар, увеличиваются. Кроме того, возникают сложности проникновения лазерного луча на внутреннюю поверхность деталей малого диаметра и значительной протяженности. Поэтому этот способ имеет ограниченное применение и может быть реализован только для обработки наружных цилиндрических поверхностей.

Известен также способ получения упрочненного слоя на внутренней резьбовой поверхности детали внутренним включающим пластическое деформирование металла метчиком с раздвижными деформируемыми элементами [пат. РФ 2241579, МПК B23G 5/06, B23P 15/52, B24B 39/00, B21H 3/08. Способ статико-импульсного формообразования и упрочнения внутренних резьб и профилей // Ю.С. Степанов, А.В. Киричек и др. - Опубл. БИ 12, 10.12.2004]. В известном способе производят упрочнение статико-импульсной обработкой резьбы, прилагая к ней периодическую динамическую нагрузку. Однако детали, обработанные известным способом, характеризуются наличием микротрещин в поверхностном слое материала, снижающих прочность и износостойкость резьбы. Кроме того, сложность используемого инструмента и технологии упрочнения приводят к возрастанию стоимости обработки детали.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является способ защитно-упрочняющей обработки резьбовой поверхности детали из легированных сталей [патент РФ №2110607, МПК C23C 14/46, C23C 14/58. СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ. Дата публ.: 10.05.1998], включающий подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия. При этом производят нанесение покрытий на поверхность и обработку покрытия высококонцентрированным источником энергии, а покрытие наносят в виде смеси пластичной составляющей и твердой составляющей из тугоплавкого соединения. В качестве покрытия используют смесь металлического титана и нитрида титана, а обработку проводят электронным лучом.

Недостатками известного способа являются невысокая производительность и точность процесса обработки резьбы, поскольку необходимо каждую деталь обрабатывать индивидуально, при этом обработка электронным лучом нанесенного порошка не позволяет достичь высокой точности, необходимой, например, для таких деталей, как детали ролико-винтовых или шарико-винтовых пар или передач. Кроме того, использование упрочненных по известному способу [патент РФ №2110607, МПК C23C 14/46, C23C 14/58. СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ. Дата публ.: 10.05.1998] деталей для таких устройств, как ролико-винтовые передачи, не позволяет получить высокие эксплуатационные свойства, такие как износостойкость, антиадгезионные свойства и низкий коэффициент трения.

Задачей настоящего изобретения является создание такой резьбовой поверхности ответственной высокоточной детали из легированных сталей, которая позволила бы обеспечить их повышенные эксплуатационные свойства (износостойкость и антифрикционные свойства).

Техническим результатом заявляемого способа является повышение эксплуатационных свойств (износостойкости и антифрикционных свойств) резьбовых поверхностей ответственных деталей из легированных сталей за счет защитно-упрочняющей обработки и нанесения износостойкого покрытия.

Технический результат достигается тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей, включающем подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия, в отличие от прототипа подготовку поверхности под нанесение покрытия совмещают с упрочняющей обработкой, проводя ее в следующей последовательности, погружают деталь в электролит, используя в качестве электролита 3-8% водный раствор сульфата аммония, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, при этом обеспечивают режим электролитно-плазменного полирования резьбовой поверхности: напряжение 260-310 В, температура электролита 70-85°C, ток 0,20-0,55 А/см2, а после электролитно-плазменной обработки резьбовой поверхности детали помещают в вакуумную камеру установки для ионно-имплантационной обработки, проводят ионную очистку ионами аргона при энергии от 6 до 8 кэВ, плотности тока от 100 мкА/см2 до 120 мкА/см2 в течение от 0,2 до 0,8 ч и ионно-имплантационную обработку поверхности детали ионами иттербия или азота при энергии от 20 до 35 кэВ, а затем в этой же установке ионно-плазменным методом наносят износостойкое покрытие из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм; при этом возможны следующие варианты способа: создание требуемого вакуума производится турбомолекулярным насосом; создают вакуум от 10-5 до 10-7 мм рт.ст.; создают вакуум от 10-5 до 10-7 мм рт.ст.; ионную имплантацию проводят или в импульсном, или в непрерывном режиме; после ионно-имплантационной обработки проводят постимплантационный отжиг.

Технический результат достигается также тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей в качестве деталей из легированных сталей используют детали ролико-винтовой или шарико-винтовой передачи.

Технический результат достигается также тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей после нанесения износостойкого покрытия наносят слой механической смеси нанопорошка оксида кремния 30%-50% в кремнийорганической жидкости - остальное или слой механической смеси нанопорошка оксида кремния 30% - 50% в смеси минеральных или нефтяных масел с добавками кальциевого мыла нафтеновых кислот и кислот окисленного петролатума, затем слой облучают электромагнитным полем от 2-6 МГц высокой частоты в течение от 10 до 20 с, нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C и проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт деталь - имплантируемый упрочняющий металл, причем на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А, при времени пропускания тока t=30-60 с.

Технический результат достигается также тем, что в способе повышения износостойкости резьбовой поверхности детали из легированных сталей после нанесения износостойкого покрытия наносят слой нанокомпозитного состава, содержащего оксид кремния SiO2, растворенный в литоле, затем слой облучают электромагнитным полем от 2÷6 МГц высокой частоты в течение от 10 до 20 с, нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C, и проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт деталь - имплантируемый упрочняющий металл причем на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А, при времени пропускания тока t=30-60 с.

Для оценки эксплуатационных свойств деталей из легированных сталей с резьбовыми поверхностями были проведены следующие испытания. Образцы из легированных сталей ШХ-15, 12Х2Н4А и 40ХН2МА были подвергнуты электролитно-плазменной обработке с последующей ионно-имплантационной обработкой и нанесением ионно-плазменным методом изностостойкого покрытия из нитрида титана или нитрида циркония по предлагаемому способу и образцы, обработанные согласно способу-прототипу [Заявка РФ №2011125810. МПК B23G 1/00. Способ изготовления резьбы на детали. Дата публикации заявки: 27.12.2012 Бюл. №36].

Обработка электролитно-плазменным методом. Деталь погружали в электролит и производили ЭПО, используя в качестве электролита 3-8% водный раствор сульфата аммония (по следующим вариантам: 2% - неудовлетворительный результат (Н.Р.); 3% - удовлетворительный результат (У.Р.); 4% - (У.Р.); 5% - (У.Р.); 6% - (У.Р.); 7% - (У.Р.); 8% - (У.Р.); 9% - (Н.Р.)), обеспечивая режим электролитно-плазменного полирования (ЭПП) резьбовой поверхности: напряжение 260-310В (250В - (Н.Р.); (260В - (У.Р.); (280В - (У.Р.); (300В - (У.Р.); 310В - (У.Р.); 320В - (Н.Р.)), температура электролита 70-85°C (60°C - (Н.Р.); 70°C - (У.Р.); 75°C - (У.Р.); 85°C - (У.Р.); 95°C - (Н.Р.)),ток 0,20-0,55 А/см2 - 0,12 А/см2 (Н.Р.); 0,20 А/см2 (У.Р.); 0,33 А/см2 (У.Р.); 0,42 А/см2 (У.Р.); 0,55 А/см2 (У.Р.); 0,63 А/см2 (Н.Р.)).

При ЭПП формировали вокруг обрабатываемой поверхности детали парогазовую оболочку, зажигали электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала (как положительного - анодная, так и отрицательного - катодная обработка).

После электролитно-плазменной обработки резьбовой поверхности детали помещали в вакуумную камеру установки для ионно-имплантационной обработки, проводили ионную очистку ионами аргона при энергии от 6 до 8 кэВ (4,7 кэВ - (Н.Р.); 6 кэВ - (У.Р.); 7 кэВ - (У.Р.); 8 кэВ - (У.Р.); 9,3 кэВ - (Н.Р.)), плотности тока от 100 мкА/см2 до 120 мкА/см2 (90 мкА/см2 - (Н.Р.); 100 мкА/см2 - (У.Р.); 110 мкА/см2 - (У.Р.); 120 мкА/см2 - (У.Р.); 130 мкА/см2 -(Н.Р.)) в течение от 0,2 до 0,8 ч (0,1 ч - (Н.Р.); 0,2 ч - (У.Р.); 0,4 ч - (У.Р.); 0,6 ч - (У.Р.); 0,8 ч - (У.Р.); 1,0 ч - (Н.Р.)) и ионно-имплантационную обработку поверхности детали ионами иттербия при энергии от 20 до 35 кэВ (15 кэВ - (Н.Р.); 20 кэВ - (У.Р.); 25 кэВ - (У.Р.); 30 кэВ - (У.Р.); 35 кэВ - (У.Р.); 40 кэВ - (Н.Р.)) или ионно-имплантационную обработку поверхности детали ионами азота при энергии от 20 до 35 кэВ (15 кэВ - (Н.Р.); 20 кэВ - (У.Р.); 25 кэВ - (У.Р.); 30 кэВ - (У.Р.); 35 кэВ - (У.Р.); 40 кэВ - (Н.Р.)). Нанесение ионно-плазменным методом износостойкого покрытия из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм (0,3 мкм - (Н.Р.); 0,5 мкм - (У.Р.); 1,0 мкм - (У.Р.); 1,2 мкм - (Н.Р.))

Создание требуемого вакуума производилось турбомолекулярным насосом; создавали вакуум от 10-5 до 10-7 мм рт.ст.

После обработки часть деталей подвергали постимплантационному отжигу в одном вакуумном объеме установки за один технологический цикл.

Ионную имплантацию проводили как в импульсном, так и непрерывном режимах. В качестве деталей из легированных сталей используют детали ролико-винтовой или шарико-винтовой передачи. На обрабатываемую поверхность части деталей наносили следующие слои: - слой из механической смеси нанопорошка оксида кремния 30% - 50% (25% - (Н.Р.); 30% - (У.Р.); 40% - (У.Р.); 50% - (У.Р.); 60% - (Н.Р.)) с кремнийорганической жидкостью (остальное); слой из механической смеси нанопорошка оксида кремния 30% - 50% (25% - (Н.Р.); 30% - (У.Р.); 40% - (У.Р.); 50% - (У.Р.); 60% - (Н.Р.)) в смеси минеральных или нефтяных масел с добавками кальциевого мыла нафтеновых кислот и кислот окисленного петролатума; слой нанокомпозитного состава, содержащего оксид кремния SiO2, растворенный в литоле. Затем слои облучают электромагнитным полем от 2÷6 МГц (1 МГц - (Н.Р.); 2 МГц - (У.Р.); 4 МГц - (У.Р.); 6 МГц - (У.Р.); 8 МГц - (Н.Р.)) в течение от 10 до 20 с (5 с - (Н.Р.); 10 с - (У.Р.); 20 с - (У.Р.); 30 с - (Н.Р.)), нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C (660°C - (Н.Р.); 680°C - (У.Р.); 740°C - (У.Р.); 800°C - (У.Р.); 860°C - (У.Р.); 880°C - (Н.Р.)) и проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов (кобальт, медь, молибден, никель, олово, свинец), пропуская постоянный электрический ток через контакт «деталь -имплантируемый упрочняющий металл». На поверхности обрабатываемой детали создавали поверхностный слой толщиной от 0,1-1,0 мкм (0,05 мкм-(Н.Р.); 0,1 мкм - (У.Р.); 0,3 мкм - (У.Р.); 0,7 мкм - (У.Р.); 1,0 мкм - (У.Р.); 1,2 мкм- (Н.Р.)) путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А (3 А - (Н.Р.); 4 А - (У.Р.); 6 А - (У.Р.); 8 А - (У.Р.); 12 А - (У.Р.); 14 А - (Н.Р.);), при времени пропускания тока t=30-60 с (20 с - (Н.Р.); 30 с - (У.Р.); 40 с - (У.Р.); 60 с - (У.Р.); 80 с - (Н.Р.)).

Трибологические испытания образцов показали, что износостойкость резьбовых поверхностей по сравнению с образцами, обработанными по способу-прототипу, повысилась в 8-12 раз при снижении коэффициента трения в 1,3-1.5 раз.

Таким образом, проведенные сравнительные испытания показали, что применение в способе повышения износостойкости резьбовой поверхности детали из легированных сталей, включающем подготовку поверхности под нанесение покрытия и нанесение износостойкого покрытия, подготовку поверхности под нанесение покрытия совмещают с упрочняющей обработкой, проводя ее в следующей последовательности, погружают деталь в электролит, используя в качестве электролита 3-8% водный раствор сульфата аммония, формируют вокруг обрабатываемой поверхности детали парогазовую оболочку и зажигают электрический разряд между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала; обеспечивают режим электролитно-плазменного полирования резьбовой поверхности: напряжение 260-310 В, температура электролита 70-85°C, ток 0,20-0,55 А/см2; после электролитно-плазменной обработки резьбовой поверхности детали помещают в вакуумную камеру установки для ионно-имплантационной обработки, проводят ионную очистку ионами аргона при энергии от 6 до 8 кэВ, плотности тока от 100 мкА/см2 до 120 мкА/см2 в течение от 0,2 до 0,8 ч и ионно-имплантационную обработку поверхности детали ионами иттербия или азота при энергии от 20 до 35 кэВ; затем в этой же установке ионно-плазменным методом наносят износостойкое покрытие из нитрида титана или нитрида циркония толщиной 0,5-1,0 мкм; при этом возможны следующие варианты способа: создание требуемого вакуума производится турбомолекулярным насосом; создают вакуум от 10-5 до 10-7 мм рт.ст.; создают вакуум от 10-5 до 10-7 мм рт.ст.; ионную имплантацию проводят, или в импульсном или в непрерывном режиме; после ионно-имплантационной обработки проводят постимплантационный отжиг; в качестве деталей из легированных сталей используют детали ролико-винтовой или шарико-винтовой передачи; на обрабатываемую поверхность детали наносят слой механической смеси нанопорошка оксида кремния 30% - 50% в кремнийорганической жидкости - остальное или слой механической смеси нанопорошка оксида кремния 30% - 50% в смеси минеральных или нефтяных масел с добавками кальциевого мыла нафтеновых кислот и кислот окисленного петролатума; затем слой облучают электромагнитным полем от 2-6 МГц высокой частоты в течение от 10 до 20 с; нагревают поверхность обрабатываемой детали до температуры от 680 до 860°C; проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт «деталь - имплантируемый упрочняющий металл»; на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А при времени пропускания тока t=30-60 с или на обрабатываемую поверхность детали наносят слой нанокомпозитного состава, содержащего оксид кремния SiO2, растворенный в литоле; затем слой облучают электромагнитным полем от 2÷6 МГц высокой частоты в течение от 10 до 20 с, нагревая поверхность обрабатываемой детали до температуры от 680 до 860°C; проводят электромеханическую имплантацию поверхностного слоя положительными ионами тяжелых металлов, пропуская постоянный электрический ток через контакт «деталь - имплантируемый упрочняющий металл»; на поверхности обрабатываемой детали создают поверхностный слой толщиной от 0,1-1,0 мкм путем электромеханической имплантации одного из следующих сплавов: баббита, бронзы, латуни или меди при силе тока от 4-12 А при времени пропускания тока t=30-60 с - позволяет повысить по сравнению с прототипом износостойкость и антифрикционные свойства, что подтверждает заявленный технический результат предлагаемого изобретения повышение эксплуатационных свойств (износостойкости и антифрикционных свойств) резьбовых поверхностей ответственных деталей из легированных сталей за счет обеспечения высокоточной защитно-упрочняющей обработки.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 75.
10.06.2015
№216.013.50ca

Способ полирования деталей из титановых сплавов

Изобретение относится к полированию деталей из титановых сплавов и может быть использовано для полирования деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности деталей и нанесением защитных ионно-плазменных покрытий. Способ...
Тип: Изобретение
Номер охранного документа: 0002552203
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58b7

Способ нанесения покрытия и электродуговой испаритель для осуществления способа

Изобретение относится к технике и технологии нанесения защитных ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин. Способ включает размещение деталей в вакуумной камере, приложение к деталям потенциала...
Тип: Изобретение
Номер охранного документа: 0002554252
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.6086

Способ электролитно-плазменного удаления полимерных покрытий с поверхности пластинчатого торсина несущего винта вертолета

Изобретение относится к области гальванотехники и может быть использовано для удаления полимерных покрытий с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, а также при восстановлении особо ответственных деталей летательных...
Тип: Изобретение
Номер охранного документа: 0002556251
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6424

Способ получения упрочненного слоя на резьбовой поверхности детали из легированных сталей

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки деталей с резьбовыми поверхностями, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает формирование геометрии резьбы резьбообразующим инструментом, ее обработку...
Тип: Изобретение
Номер охранного документа: 0002557183
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6d90

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки металлов и сплавов, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, а также режущего инструмента и штамповой оснастки....
Тип: Изобретение
Номер охранного документа: 0002559606
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d96

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к способам защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии. Проводят подготовку поверхности пера лопатки под нанесение покрытия электролитно-плазменным полированием в электролите в виде 4 - 8% водного раствора сульфата аммония при напряжении...
Тип: Изобретение
Номер охранного документа: 0002559612
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.86e8

Способ электролитно-плазменного удаления полимерных покрытий с поверхности детали из легированных сталей

Изобретение относится к технологии электролитно-плазменного удаления защитных покрытий из полимерных материалов с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, и может быть использовано при восстановлении особо ответственных...
Тип: Изобретение
Номер охранного документа: 0002566139
Дата охранного документа: 20.10.2015
27.11.2015
№216.013.946b

Способ изготовления полой металлической лопатки турбомашины

Изобретение может быть использовано при изготовлении полых, например, авиационных вентиляторных лопаток. На поверхность участков, не подвергаемых соединению при диффузионной сварке, наносят антиадгезионное покрытие. После диффузионной сварки пакета, собранного из заготовок корыта, спинки и...
Тип: Изобретение
Номер охранного документа: 0002569614
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9655

Способ контроля формы и положения профиля рабочих лопаток моноколеса

Использование: изобретение относится к способам измерения, а именно к способам измерения профиля сечений, и может быть использовано для контроля профиля и положения рабочих лопаток моноколеса. Сущность изобретения: форму и положение профиля рабочих лопаток моноколеса контролируют в заданном...
Тип: Изобретение
Номер охранного документа: 0002570105
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a0a3

Способ сбора нефти из-под ледяного покрова водоема

Способ сбора нефти или нефтепродукта из-под ледяного покрова водоема включает локализацию пятна нефти или нефтепродукта и последующее удаление нефти или нефтепродукта откачкой в нефтеприемник, в области локализации пятна нефти или нефтепродукта в ледяном покрове бурят скважину, погружают через...
Тип: Изобретение
Номер охранного документа: 0002572765
Дата охранного документа: 20.01.2016
Показаны записи 31-40 из 138.
10.12.2015
№216.013.9655

Способ контроля формы и положения профиля рабочих лопаток моноколеса

Использование: изобретение относится к способам измерения, а именно к способам измерения профиля сечений, и может быть использовано для контроля профиля и положения рабочих лопаток моноколеса. Сущность изобретения: форму и положение профиля рабочих лопаток моноколеса контролируют в заданном...
Тип: Изобретение
Номер охранного документа: 0002570105
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a0a3

Способ сбора нефти из-под ледяного покрова водоема

Способ сбора нефти или нефтепродукта из-под ледяного покрова водоема включает локализацию пятна нефти или нефтепродукта и последующее удаление нефти или нефтепродукта откачкой в нефтеприемник, в области локализации пятна нефти или нефтепродукта в ледяном покрове бурят скважину, погружают через...
Тип: Изобретение
Номер охранного документа: 0002572765
Дата охранного документа: 20.01.2016
27.05.2016
№216.015.429d

Способ защиты от эрозии и солевой коррозии лопаток турбомашин из легированных сталей

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбостроении для защиты пера лопатки компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800 °C. Способ включает подготовку поверхности пера лопатки под...
Тип: Изобретение
Номер охранного документа: 0002585580
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.440d

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты пера лопаток компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800°C. Подготавливают поверхности пера лопатки под нанесение...
Тип: Изобретение
Номер охранного документа: 0002585599
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.7002

Способ электроэрозионной обработки отверстий малого диаметра

Изобретение относится к электроэрозионной обработке и может быть использовано для электроэрозионной прошивки прецизионных отверстий малого диаметра широкой номенклатуры деталей, например лопаток газотурбинного двигателя. Способ включает электроэрозионную обработку деталей, при которой...
Тип: Изобретение
Номер охранного документа: 0002596567
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8047

Колпачковая тарелка

Изобретение относится к конструкциям массообменных тарелок для систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации и может найти применение в химической, нефтехимической и других смежных отраслях промышленности. Колпачковая тарелка состоит из основания в форме...
Тип: Изобретение
Номер охранного документа: 0002602113
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.808c

Контактный элемент колпачковой тарелки

Изобретение относится к конструкциям массообменных тарелок для систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации, и может найти применение в химической, нефтехимической и других смежных отраслях промышленности. Контактный элемент колпачковой тарелки включает...
Тип: Изобретение
Номер охранного документа: 0002602115
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8292

Способ восстановительного ремонта трубопровода и устройство для его осуществления

Группа изобретений относится к трубопроводному транспорту и предназначена для проведения ремонтных работ без остановки эксплуатации трубопровода. На наружную поверхность восстанавливаемого участка трубопровода после очистки поверхности и разделки трещин устанавливают муфту с образованием...
Тип: Изобретение
Номер охранного документа: 0002601782
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8c15

Способ и устройство для сбора нефти и нефтепродукта из-под ледяного покрова водоема

Изобретение относится к области охраны окружающей среды и может быть использовано при разливе нефти (нефтепродуктов) под ледяным покровом преимущественно арктических водоемов. Предложен способ сбора нефти или нефтепродукта из-под ледяного покрова водоема, включающий локализацию пятна нефти или...
Тип: Изобретение
Номер охранного документа: 0002604931
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8dea

Способ химико-термической обработки детали из титана

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической обработки детали из...
Тип: Изобретение
Номер охранного документа: 0002605029
Дата охранного документа: 20.12.2016
+ добавить свой РИД