×
10.01.2015
216.013.1ded

Результат интеллектуальной деятельности: СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является оптимизация процесса бурения скважины. Способ включает воздействие на горную породу и ее разрушение вращающимся и находящимся под нагрузкой индентором, определение показателей твердости с использованием величины прикладываемой нагрузки и площади контактной поверхности индентора. При этом измерения осуществляют непосредственно в процессе бурения в дифференциальной форме: механическую скорость бурения или время продолжительности определенного интервала глубины, изменением нагрузки на долото выравнивают значение скоростей или времен, измеряют в момент равенства скоростей или времен значение нагрузки на долото и определяют твердость горной породы по алгоритму. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к способам определения прочности и твердости горных пород путем приложения к ним механических усилий и может быть использовано в горном деле, бурении.

Известен способ определения упругих характеристик горной породы по данным измерений в скважине (пат. РФ №2449122, МПК E21B 49/00, оп. 27.04.2012. Бюл. №12), техническим результатом которого является определение упругих характеристик горной породы по данным замера в скважине радиального смещения стенок наклонной или горизонтальной скважины после вскрытия скважиной заданного интервала пласта. В заданном интервале определяют радиальные смещения боковой и верхней стенок наклонной скважины по результатам измерения радиусов в двух взаимно перпендикулярных направлениях. Далее по результатам измерения рассчитывают среднее квадративное отклонение и доверительные интервалы смещения стенок скважины. Затем составляют две системы уравнений для боковой и верхней стенок, скважины связывающие соответствующие смещения стенок скважины с упругими характеристиками горной породы, с геостатическим давлением и с гидростатическим давлением бурового раствора и углом искривления скважины. Системы решают методом последовательного приближения относительно модуля деформации и фактического коэффициента бокового распора горных пород.

Недостатком способа является невозможность определения твердости горной породы непосредственно в процессе бурения, поскольку бурение и измерения, на основе которых осуществляется определение упругих свойств горной породы в прототипе, разнесены во времени.

Известны способ определения прочности горных пород и устройство для его реализации (пат. РФ №2204121, МПК G01N 3/40, оп. 27.12.2001 г.), включающий воздействие на горную породу и разрушение ее вращающимся под нагрузкой индентором, в процессе разрушения одновременно измеряют мощность акустических колебаний в призабойной зоне и скорость относительного перемещения индентора и горной породы и определяют показатель прочности горной породы. Недостатком как способа, так и устройства его реализующего является то, что они относятся к лабораторным средствам и применять их в процессе бурения невозможно. Кроме того, к недостатку способа и устройства следует отнести и то, что с их помощью определяется только показатель прочности, а не ее значение.

Наиболее близким способом является способ определения прочности горной породы, включающий различные виды механического воздействия на горную породу, разрушение горной породы, определение показателей прочности с использованием величины прикладываемой нагрузки, площади контактной поверхности индентора или площади лунки разрушения в горной породе (Любимов Н.И., Носенко Л.И. Справочник по физико-механическим параметрам горных пород рудных районов. М.: Недра, 1978 г.).

Недостатком известного способа определения прочности горной породы является отличие формы применяемых инденторов и скорости приложения нагрузки на горную породу от формы породоразрушающего инструмента и скорости приложения усилий при воздействии инструмента на горную породу. Это обуславливает резкое отличие механизма разрушения горных пород при испытаниях от реализуемого в производственных условиях. Как следствие, прочность горной породы, определенная по данным способам, не отражает реальной прочности горной породы.

Известна система: буровая - совокупность датчиков (первичных измерительных преобразователей (ПИП) технологических параметров бурения - станция геолого-технологических исследований (ГТИ), осуществляющая сбор, обработку, регистрацию и хранение информации. При этом в функции станции ГТИ входит выдача рекомендаций по совершенствованию бурового процесса на основании полученных данных (Э.Е. Лукьянов. Геолого-технологические и геофизические исследования в процессе бурения. - Новосибирск: Издательство Дом «Историческое наследие Сибири», 2009, 752 с.).

Недостатком системы является то, что в ней отсутствует модуль (блок), с помощью которого можно осуществить измерения в дифференциальной форме: нагрузку на долото G, механической скорости бурения или времени продолжительности бурения определенного интервала глубины T.

Задача изобретения - определение и регистрация твердости горной породы забоя и на основании полученной геологической информации оптимизировать дальнейший процесс бурения скважины.

Поставленная задача достигается тем, что в способе определения твердости горной породы забоя в процессе бурения скважины, включающем воздействие на горную породу и ее разрушение вращающимся и находящимся под нагрузкой индентором, определение показателей твердости с использованием величины прикладываемой нагрузки и площади контактной поверхности индентора, согласно предлагаемому изобретению измерения осуществляют непосредственно в процессе бурения в дифференциальной форме: механическую скорость бурения ϑ или время продолжительности бурения определенного интервала глубины T, изменением нагрузки на долото, выравнивают значения скоростей или времен, измеряют в момент равенства скоростей или времен значение нагрузки на долото и определяют твердость горной породы забоя по алгоритму

,

где - твердость горной породы неизвестная (определяемая), соответствующая последующей точке измерения по глубине скважины или времени;

- твердость горной породы известная (уставка), соответствующая предыдущей точке измерения по глубине скважины или времени или выбранная, например, по результатам эксперимента;

Gi - нагрузка на долото, соответствующая твердости горной породы и измеренная на последующей точке измерения;

Gi-1 - нагрузка на долото, соответствующая твердости горной породы измеренная на предыдущей точке измерения, т.е. соответствующая уставке.

Кроме того, для контроля твердости горной породы, нарушаемого по причине изменяющихся забойных условий, равенства алгоритма, в него вводится индикаторный член в или а сам алгоритм примет вид

или

где ϑi - механическая скорость бурения в последующей точке измерения по глубине;

ϑi-1 - механическая скорость бурения в предыдущей точке измерения по глубине;

Ti - время продолжительности последующего интервала бурения;

Ti-1 - время продолжительности предыдущего интервала бурения.

Кроме того, восстановление нарушаемого равенства алгоритма осуществляют путем изменения нагрузки на долото - числителя алгоритма до момента равенства единице отношения скоростей или времен, т.е. индикаторного члена алгоритма, причем в момент равенства отношения единице измеряют значение нагрузки на долото - числителя алгоритма.

Система автоматизированного определения и регистрации твердости горной породы забоя в процессе бурения скважины, включающая датчики нагрузки на долото, перемещения талевого блока, лебедку и станцию ГТИ с программным обеспечением, осуществляющая сбор, обработку и регистрацию информации, отличается тем, что в систему вводят модуль-диспетчер, осуществляющий консолидацию в точках измерения через шаг дискретизации по глубине или времени, указанных устройств на решение задачи по определению и регистрации твердости горной породы забоя, причем в остальное время эти устройства работают в штатном режиме.

Алгоритм взаимосвязи расхода промывочной жидкости Q, твердости горной породы забоя Pш.з., технологических параметров, разрушающих эту породу, - нагрузку на долото G и число его оборотов n, имеет вид

где ;

V - объем разрушенной породы за единичный акт взаимодействия зубка долота с горной породой забоя;

Sk0 - площадь поверхности зубка долота, контактирующего с породой забоя;

γп - удельный вес разрушаемой породы;

γз.п. - удельный вес промывочной жидкости в затрубном пространстве;

γж - удельный вес промывочной жидкости, закачиваемой в скважину.

Будем считать, что A, G, n постоянны по крайней мере на протяжении одного рейса. Тогда (1) можно записать для соседних точек измерения:

Возьмем отношение формул (2а) и (2б) и получим

где - твердость горной породы на глубине Hi, т.е. на последующей точке измерения;

- твердость горной породы на глубине Hi-1, т.е на предыдущей точке измерения.

При этом ΔH=Hi-Hi-1 - шаг дискретизации по глубине, изменяющийся от 0,1 до 1 м и который задается, например, программно в зависимости от скважинных условий.

Из (3) имеем

Полученные выражения (3), (4) только подтверждают вывод, что нагрузка на долото зависит только от твердости разрушаемой горной породы забоя (А.А. Погарский. Автоматизация процесса бурения глубоких скважин. - М:. Недра, 1972, 216 с.). Поскольку твердость горной породы по мере углубления забоя постоянно изменяется, то выражение (4) лучше представить в виде неравенства, т.е.

Полученное выражение (5) удобно для применения в лабораторных условиях. Применение же его в процессе бурения, когда изменяющаяся, но подлежащая определению твердость горной породы забоя находится на большом расстоянии от устья (месте определения и регистрации), практически невозможно, т.к. в неравенстве нет члена фиксирующего момент равенства левой и правой частей формулы (5).

Механическая скорость бурения ϑ или время продолжительности бурения определенного интервала глубины T весьма чувствительны к изменениям условий на забое, особенно к изменениям твердости горной породы, причем их реакция практически мгновенна. Поэтому введем в формулу (5) индикатор равенства в виде отношения скоростей (времени) (отношение - это ничто иное как дифференциальность относительно единицы), т.е. или получим

,

где ϑi и ϑi-1 - соответственно механическая скорость бурения на глубине Hi и Hi-1;

Ti и Ti-1 - соответственно время бурения интервалов проходки на глубине Hi и Hi-1.

Действительно, при увеличении (уменьшении) твердости горной породы, при прочих равных условиях, скорость проходки ϑi (числитель) будет уменьшаться (увеличиваться) относительно фиксированного (предыдущего) значения скорости в знаменателе ϑi-1 (соответственно увеличиваться (уменьшаться) время Ti относительно Ti-1). Изменением нагрузки на долото Gi в числителе в сторону увеличения (уменьшения) скорости ϑi и уменьшения (увеличения) времени Ti добиваемся условия ϑii-1, Ti=Ti-1 или , . Это равенство скоростей есть момент превращения неравенств (6а и 6б) в равенства, т.е. когда создается условие вычисления неизвестной величины твердости горной породы по выражениям (4) или (6а) и (6б), преобразуемым в равенства. Последовательность процедур по определению твердости горной породы по полученным алгоритмам (6а) и (6б) подобна взвешиванию некоего продукта на стрелочных весах. В нашем случае роль стрелки играет отношение или , колеблющееся относительно единицы. Неизвестная и подлежащая определению твердость горной породы находится на одной условной чаше весов (забой), на другой условной чаше (устье) находится известная величина твердости (мера или уставка) и соответствующее ей известное усилие Gi-1 (знаменатель выражений), а также измеряемая величина разновесного усилия Gi (числитель). Изменением разновесного усилия Gi добиваемся равенства ϑii-1 или Ti=Ti-1, т.е. когда , . Момент равенства этих отношений единице соответствует превращению неравенств (6а) или (6б) в равенства, по которым теперь можно вычислять неизвестную твердость горной породы забоя. На этом процесс взвешивания заканчивается. Значение меры (уставка) и соответствующее этой мере значение усилия Gi-1 выбирается из различных соображений. Во-первых, величину меры и соответствующее усилие можно получить экспериментально по методу Шрейнера и использовать ее для определения твердости породы забоя и непрерывной регистрации на всем протяжении как по глубине скважины, так и по времени, т.е. в виде градиентной кривой. Во-вторых, в качестве меры может использоваться каждое последующее определенное значение твердости породы и соответствующее ей усилие. Тогда каждое последующее вычисленное значение твердости породы и измеренное усилие (нагрузка на долото) становится предыдущей мерой (уставкой) для очередного процесса измерения и вычисления. Такая последовательность обновления меры (уставки) эквивалентна дифференциальному методу измерений. В этом случае должны четко выделяться границы раздела между слоями пород с незначительным отличием твердостей, а также реагировать на приближающуюся зону АВПД. Таким образом, регистрацию твердости горной породы можно осуществлять в двух форматах:

- непрерывном - относительно выбранной (заданной) меры;

- дифференциальном, когда каждое последущее вычисленное значение твердости становится предыдущей мерой для очередного процесса измерения и вычисления.

Описанное выше по сути раскрывает последовательность процедур и необходимые средства по реализации этих процедур при определении твердости горной породы забоя. На фиг.1 приведена система вычисления и регистрации твердости горной породы, на которой:

1 - датчик нагрузки на долото;

2 - датчик перемещения талевого блока, позволяющий определять текущую глубину скважины, мгновенную скорость и механическую скорость за шаг дискретизации по глубине;

3 - лебедка;

4 - модуль-диспетчер;

5 - программное обеспечение сбора информации;

6 - ручной ввод информации;

7 - программное обеспечение обработки информации;

8 - программа визуализации и регистрации информации;

9 - хронометр, осуществляющий измерение календарного времени и дискретизацию информации по времени, причем шаги дискретизации по глубине и времени должны синхронизироваться;

10 - регистратор (принтер);

11 - станция геолого-технологических исследований (ГТИ).

Вновь вводимый модуль 4 по существу выполняет диспетчерские функции по консолидации устройств и средств в необходимое время на реализацию предлагаемого алгоритма определения и регистрации твердости горной породы забоя и существующих в современных системах контроля и управления процессами бурения (Э.Е. Лукьянов. Геолого-технологические и геофизические исследования в процессе бурения. - Новосибирск: Издательство Дом «Историческое наследие Сибири», 2009, 752 с.). Приведенная на фиг.1 система работает следующим образом. С помощью ручного ввода информации 6 на необходимой глубине или в необходимое время в программу 5 вводится величина твердости горной породы, например определенной предварительно, т.е. мера (уставка) и соответствующая ей величина нагрузки на долото Gi-1, а также с датчика 2 значение текущей механической скорости ϑi-1 или время Ti-1 с хронометра 9. При этом процесс бурения осуществляется в штатном режиме. При приближении к точке измерения, определяемой шагом дискретизации по глубине или времени, задаваемым программой 5, эта же программа в этот момент фиксирует значения нагрузки Gi с датчика 1, механической скорости ϑi с датчика 2 или время Ti с хронометра 9. Полученные данные программа 5 передает в модуль 4, где определяется отношение или . Если эти отношения не равны единице, то модуль 4 вырабатывает сигнал на запуск в работу лебедки 3, которая начнет работать в сторону выравнивания скоростей или времени, устремляя отношения к единице. Как только это отношение будет равно единице, модуль 4 снимет сигнал, заставляющий работать лебедку. Одновременно сигнал поступит с модуля 4 в программу 5, по которому она примет значения нагрузки Gi с датчика. Теперь все необходимые данные для вычисления твердости горной породы, т.е. , Gi, Gi-1, поступят с программы 5 в программу 7, которая вычислит значение твердости по алгоритму

.

Далее полученное значение твердости из программы 7 поступает в программу 8, под управлением которой принтер 10 регистрирует полученный результат.

Последующие шаги измерения, вычисления и регистрации будут повторяться на протяжении необходимой глубины скважины или необходимого времени.

Необходимо отметить, что полученные на первом шаге дискретизации по глубине или времени значения твердости горной породы забоя и соответствующая ей нагрузка на долото необходимо использовать как меру (уставку) для последующих шагов измерения и вычисления твердости горной породы забоя. Первый шаг дискретизации по сути является адаптивным, поскольку полученные на этом шаге результаты твердости горной породы соответствуют забойным условиям конкретной скважины. Кроме того, поскольку определение твердости горной породы осуществляют в реальных скважинных условиях, в которых свойства пород определяются не только твердостью, но и ее фильтрационными (пористостью, проницаемостью) свойствами, то полученный результат больше соответствует буримости горной породы, а сам процесс определения этих свойств - научному эксперименту. Более того, полученный результат твердости горной породы используется для перехода процесса бурения в адаптивный режим, т.е. результат используется как элемент обратной связи в промежутках между процессами измерения и определения твердости горной породы.


СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
СПОСОБ И СИСТЕМА АВТОМАТИЗИРОВАННОГО ОПРЕДЕЛЕНИЯ И РЕГИСТРАЦИИ ТВЕРДОСТИ ГОРНОЙ ПОРОДЫ ЗАБОЯ В ПРОЦЕССЕ БУРЕНИЯ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 117.
13.01.2017
№217.015.7899

Способ ремонта трубопровода

Изобретение относится к ремонту трубопроводов методом сплошной переизоляции. При проведении ремонта останавливают эксплуатацию, освобождают трубопровод от продукта, вскрывают и очищают от изоляции. Трубы обследуют, оценивают допустимость дефектов и отбраковывают. При необходимости трубы...
Тип: Изобретение
Номер охранного документа: 0002599401
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7cfa

Способ получения флунаризина

Изобретение относится к способу получения 1-[бис(4-фторфенил)метил]-4-[(2E)-3-фенилпроп-2-ен-1-ил]пиперазина (флунаризина). Сущность изобретения заключается в том, что флунаризин получают Fe-катализируемым сочетанием 1-[бис(4-фторфенил)метил]-4-[(2E)-3-хлорпроп-2-ен-1-ил]пиперазина, полученного...
Тип: Изобретение
Номер охранного документа: 0002600450
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8292

Способ восстановительного ремонта трубопровода и устройство для его осуществления

Группа изобретений относится к трубопроводному транспорту и предназначена для проведения ремонтных работ без остановки эксплуатации трубопровода. На наружную поверхность восстанавливаемого участка трубопровода после очистки поверхности и разделки трещин устанавливают муфту с образованием...
Тип: Изобретение
Номер охранного документа: 0002601782
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8b8c

Способ определения коэффициентов трения системы "долото-забой" при бурении скважины

Изобретение относится к бурению скважин шарошечными долотами и может быть применено для совершенствования условий бурения. Техническим результатом является получение коэффициентов трения вращательного и поступательного движений долота при взаимодействии его вооружения с горной породой забоя,...
Тип: Изобретение
Номер охранного документа: 0002604099
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d39

Быстродействующее устройство измерения температуры газового потока

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры. Быстродействующее устройство измерения температуры газового потока состоит из двух каналов...
Тип: Изобретение
Номер охранного документа: 0002604573
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9159

Способ ультразвуковой сварки толстостенных конструкций

Изобретение относится к области сварки, а именно к технологии сварки толстостенных конструкций. Для повышения стойкости к появлениям трещин во время эксплуатации за счет улучшения механических свойств способ включает наложение циклической нагрузки на кристаллизующийся металл сварочной...
Тип: Изобретение
Номер охранного документа: 0002605888
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.af43

Способ стабилизации давления газа на компрессорной станции магистрального газопровода

Изобретение относится к области газовой промышленности и может быть использовано при эксплуатации многоцеховых компрессорных станций магистрального газопровода. Способ стабилизации давления газа на компрессорной станции магистрального газопровода, включающий отбор газа на собственные...
Тип: Изобретение
Номер охранного документа: 0002610876
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.bb83

Способ получения диалкилциклопент-3-ен-1,1-дикарбоксилата

Изобретение относится к органической химии, конкретно к получению диалкилциклопент-3-ен-1,1-дикарбоксилата, который находит применение в качестве сополимера, субстрата в тонком органическом синтезе, а именно исходного реагента для синтеза циклопентенкарбоновой кислоты, диенофила в реакции...
Тип: Изобретение
Номер охранного документа: 0002615765
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bf94

Способ получения высокотемпературного масла-теплоносителя

Изобретение относится к способу получения высокотемпературного масла-теплоносителя. Способ заключается в том, что неконвертированный остаток топливного гидрокрекинга сернистых и высокосернистых нефтей подвергают ректификации с целью отбора фракции 350-400°C с последующей ее экстракцией...
Тип: Изобретение
Номер охранного документа: 0002617121
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c1a9

Способ управления работой компрессорной станции при выработке природного газа из отключаемого на ремонт участка магистрального газопровода

Изобретение относится к области управления работой газоперекачивающих агрегатов компрессорной станции магистрального газопровода. Выработку газа из выведенного в ремонт участка магистрального газопровода осуществляют по заранее выбранной математической модели - а именно, двумя разнотипными...
Тип: Изобретение
Номер охранного документа: 0002617523
Дата охранного документа: 25.04.2017
Показаны записи 91-100 из 157.
27.04.2015
№216.013.46e9

Способ обработки нефтешлама

Изобретение относится к обработке нефтесодержащих отходов и может быть использовано в нефтедобывающей, нефтеперерабатывающей и нефтехимической отраслях промышленности. Способ включает отделение водной фазы и свободных углеводородов, смешение нефтешлама с породообразующими, инокулирующими и...
Тип: Изобретение
Номер охранного документа: 0002549657
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.48b2

Способ регулирования условий процесса бурения скважины и компоновка низа буровой колонны для его осуществления

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является снижение зависимости режима работы забойного гидродвигателя от забойных условий и тем самым стабилизировать его. Способ включает алгоритм механической скорости, в...
Тип: Изобретение
Номер охранного документа: 0002550117
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a3b

Способ получения этил(4е)-5-хлорпент-4-еноата

Изобретение относится к области органической химии, в частности к способу получения этил(4E)-5-хлорпент-4-еноата. Этил(4E)-5-хлорпент-4-еноат используется в синтезе феромонов и других практически значимых природных соединений. Результаты изобретения могут быть использованы в химии, тонком...
Тип: Изобретение
Номер охранного документа: 0002550510
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a3e

Способ получения хлоридов бициклических аминов

Изобретение относится к получению бициклических аминов, которые широко применяют в органическом синтезе. Способ заключается в том, что проводят процесс N-алкилирования вторичных аминов цис-2,3-дихлорметил-гем-дихлорциклопропаном в присутствии межфазного катализатора триэтилбензиламмоний...
Тип: Изобретение
Номер охранного документа: 0002550513
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a3f

Способ испарения многокомпонентных смесей и способ подачи горячей струи в ректификационные колонны

Изобретение относится к химической, нефтехимической и нефтеперерабатывающей промышленности. Изобретение касается способа испарения многокомпонентных смесей, в котором смесь нагревают при повышенном давлении, а затем производят трехкратное испарение при снижении давления, полученные пары...
Тип: Изобретение
Номер охранного документа: 0002550514
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c92

Устройство управления частотно-регулируемым электроприводом магистральных насосов

Изобретение относится к области электротехники и может быть использовано для регулирования частоты вращения электродвигателей насосов, работающих на длинные трубопроводы, например магистральных насосов нефтепроводов. Технический результат - снижение перепада давления в двух установившихся...
Тип: Изобретение
Номер охранного документа: 0002551116
Дата охранного документа: 20.05.2015
20.06.2015
№216.013.5713

Установка термической переработки нефтешлама

Изобретение относится к устройствам по переработке и утилизации нефтешлама. Техническим результатом является повышение надежности и производительности установки. Установка состоит из корпуса, реактора и загрузочного устройства. При этом установка снабжена изолированной от реактора топкой и...
Тип: Изобретение
Номер охранного документа: 0002553821
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5b87

Смазочная добавка к буровым промывочным жидкостям

Изобретение относится к смазочным добавкам к буровым промывочным жидкостям на водной основе. Технический результат снижение трения промывочной жидкости в парах «металл-металл», «металл-фильтрационная корка», снижение скорости изнашивания бурильных и обсадных труб при бурении скважин с дальними...
Тип: Изобретение
Номер охранного документа: 0002554972
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5b8a

Способ изоляции зон водопритока в скважину

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам, применяемым для изоляции водопритоков в скважину. Способ изоляции зон водопритока в скважину включает последовательную закачку коагулянта - 25% раствора хлористого кальция, буферного слоя пресной воды и гивпана....
Тип: Изобретение
Номер охранного документа: 0002554975
Дата охранного документа: 10.07.2015
10.09.2015
№216.013.767d

Пластификатор поливинилхлорида

Изобретение относится к химии ароматических соединений, а именно к сложным эфирам фталевой кислоты, которые могут быть использованы в производстве полимерных соединений. Сущность изобретения заключается в создании пластификатора поливинилхлорида, содержащего в качестве основного компонента...
Тип: Изобретение
Номер охранного документа: 0002561922
Дата охранного документа: 10.09.2015
+ добавить свой РИД