×
10.01.2015
216.013.1d6b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на наноуглеродных носителях включает обработку наноуглеродного компонента с помощью платинохлористоводородной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, при этом углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой MM ~ 40000, после этого смесь охдаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального рН с последующей сушкой в вакууме при 40°C до постоянного веса. Технический результат заключается в получении катализатора с более монодисперсным и регулируемым распределением наночастиц платины по размеру, что приводит к экономии электроэнергии, трудовых затрат и к удешевлению получаемых катализаторов. 3 ил., 1 пр.

Предложение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов используют платинусодержащие углеродные материалы.

Известен способ нанесения платины на углеродный материал методом пропитки, который включает в себя осаждение на углеродную поверхность и восстановление прекурсора - гидрата платинохлористоводородной кислоты (H2PtCl6 H2O) - с помощью сильных восстановителей (H2N4, формальдегида - CH2O+H2O, NaBH4) или одновременное добавление щелочного и восстанавливающего агента (NaOH+HOCH2CH2OH) [Герасимова Е.В., Тарасова Б.П. Платина на углеродных носителях - катализатор процессовы в низкотемпературных топливных элементах. Альтернативная энергетика и экология. 2009. №8. С.78].

Существенным недостатком этого способа является полидисперсность получаемых частиц платины по размерам, что неизбежно сказывается на каталитических свойствах данных материалов. Кроме того, присущая этому способу трудоемкость обработки соответствующего углеродного носителя - Vulkan XC-72 (сначала 4 часовое кипячение в 70% азотной кислоте при температуре 160°C, затем 4-часовое кипячение в смеси азотной и серной кислот).

Наиболее близким по сущности и достигаемому результату является способ получения Pt на угле (Pt/C), в котором используются восстановительные свойства этиленгликоля в щелочной среде [Wanzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, Zhenhua Zhou, Gonghuan Sun and Qin Hi. Preparation and Characterization of Multiwalled Carbon nanotube supported for cathode catalyze of direct methanol fuel cells, 20% Pt. // J. Phys. Chem. B.V. 26 P.6292-6299].

Сущность прототипа состоит в следующем: для восстановления прекурсора используется этиленгликоль в щелочной среде (рН ≈ 10-12) при нагревании до 160°C в течение 3-5 часов в атмосфере аргона.

Существенными недостатками прототипа являются неоднородность поверхности катализатора, связанная с агрегацией образующихся платинусодержащих наночастиц, что снижает каталитическую активность данных материалов, и длительная трудоемкая процедура обработки углеродного носителя - Vulkan XC-72 (сначала 4-часовое кипячение в 70% азотной кислоте при температуре 160°C, затем 4-часовое кипячение в смеси азотной и серной кислот).

Технической задачей и положительным результатом разработанного заявителями способа является то, что за счет добавления полиэтиленгликоля (препятствующего агрегации образующихся наночастиц Pt/C) способ позволяет получить катализатор с более монодисперсным и регулируемым распределением наночастиц платины по размеру, который во многом определяет каталитическую активность наночастиц платины и эффективность катализатора в целом. Кроме того, способ приводит к экономии электроэнергии и трудовых затрат, а также к удешевлению получаемых катализаторов.

Указанная задача и технический результат достигаются в способе получения Pt-содержащих катализаторов, включающем обработку наноуглеродного компонента с помощью платинохлористовододродной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, при этом углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой ММ ≈ 40000, после этого смесь охлаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального pH с последующей сушкой в вакууме при 40°C до постоянного веса. Способ характеризуется тем, что на 100 мг углеродного продукта с размером частиц 8-10 нм берут 5 мл дистиллированной воды, 160 мг платинохлористоводородной кислоты, 10 мл двухнормальной щелочи NaOH. Способ характеризуется также тем, что полиэтиленгликоль вводят в состав смеси в количестке 20 мг. Способ раскрывается на примере его осуществления.

Пример. 100 мг наноуглеродного компонента типа «Таунит М» (размер частиц ~ 8-10 нм), предварительно функциализированного кипячением в течение 5 минут в коцентрированной азотной кислоте, промытого до нейтрального pH дистиллированной водой и тщательно высушенного в вакууме при 40°C, поместили в 3-горлую колбу на 100 мл, залили 5 мл дист. воды, добавили 160 мг H2PtCl6, 10 мл этиленгликоля и 7.5 мл двухнормального NaOH (pH ≈ 12-14). Смесь перемешивали в ультразвуковой бане 15 минут, после чего нагревали при перемешивании механической мешалкой в токе аргона в течение 1.5 часов до 140-150°C. После этого в колбу добавляют 20 мг полиэтиленгликоля с молекулярной массой ММ ≈ 40000. После охлаждения до комнатной температуры смесь помещали в центрифугу для отделения осадка и промывали дистиллированной водой до нейтрального pH. Осадок сушили в вакууме при 40°C до постоянного веса. Содержание Pt в полученном наноуглеродном продукте составляло 20% вес.

По данным электронного микроскопа марки SUPRA 55VP 32-49 размер наночастиц платины составил 2-4 нм.

Эффективность полученного катализатора была проверена с помощью мембранно-электродного блока (МЭБ), схема которого представлена на фиг.1. Средняя загрузка платины на электродах составляла 1.30±0.05 мг/см2 для всех образцов. Активная площадь электродов составляла 1.00±0.05 см2.

На фиг.2 представлены поляризационные (вольтамперные) характеристики соответствующих МЭБ в составе ВВТЭ (E-Tek - известный катализатор [Philippe S., Jose Luis Figueiredo. Carbon Materials for Catalysis. John Wiley and Sons. P.324, 444, 579]; TaunitM - катализатор, разработанный заявителями на носителе «Таунит М» с предварительной обработкой в азотной кислоте). Измерения проводились при комнатной температуре, при подаче на анод сухого водорода и на катод сухого воздуха.

На фиг.3 представлены мощностные характеристики МЭБ. Максимальная мощность МЭБ с использованием разработанного катализатора составила 122 мВт, в то время как катализатор E-Tek показал максимальную мощность 109 мВт.

Таким образом, созданный по заявленному способу платинусодержащий катализатор на наноуглеродном носителе по свойствам и эффективности превосходит известный базовый катализатор; при этом достигается сокращение энерго- и трудозатрат на процессе получения платинусодержащего катализатора на наноуглеродном носителе.


СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ
СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ
СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 208.
20.12.2013
№216.012.8c4f

Состав для получения комплексного гранулированного наносорбента

Изобретение относится к созданию гранулированного наносорбента, который может использоваться при очистке водных сред от радионуклидов и других токсичных веществ. Состав для получения сорбента содержит (масс. част.): бентонит - 1, глауконит 2,5, оксихлорид алюминия - 1, а также нитевидный...
Тип: Изобретение
Номер охранного документа: 0002501602
Дата охранного документа: 20.12.2013
20.01.2014
№216.012.97e3

Способ стабилизации наночастиц биогенных элементов ферментами

Изобретение относится к способу стабилизации наночастиц биогенных элементов ферментами. Способ включает в себя проведение синтеза наночастиц посредством окислительно-восстановительной реакции с введением стабилизатора-фермента, образующихся наночастиц непосредственно в реакцию. При этом к...
Тип: Изобретение
Номер охранного документа: 0002504582
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9bc1

Люминесцентные композитные покрытия

Изобретение относится к получению люминесцентных композитных покрытий, обладающих высокой адгезией к гидрофильным и гидрофобным поверхностям субстратов различной химической природы. Люминесцентные композитные покрытия включают полимерные связующие - высокопрочные термостойкие...
Тип: Изобретение
Номер охранного документа: 0002505579
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.03.2014
№216.012.a970

Биосовместимое биодеградируемое композиционное волокно и способ его получения

Изобретение относится к способу получения биосовместимого биодеградируемого композиционного волокна и к волокну, полученному таким способом. Способ получения волокна заключается в смешивании предварительно диспергированного в водной среде с рН 5-7 в ультразвуковом поле с частотой v=20-100 кГц...
Тип: Изобретение
Номер охранного документа: 0002509091
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c65f

Способ получения вспененного наноструктурного углерода

Изобретение относится к химической и электротехнической промышленности и может быть использовано для модификации резин и каучуков, при производстве высокоемких конденсаторов и композитных материалов. Тонкоизмельченную смесь, содержащую, мас.ч.: углевод - 100, окислитель - 200, помещают в...
Тип: Изобретение
Номер охранного документа: 0002516542
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c665

Способ получения углерод-металлического материала каталитическим пиролизом этанола

Изобретение относится к химической промышленности. Углерод-металлический материал в виде смеси углеродных волокон и капсулированных в неструктурированном углероде частиц никеля диаметром от 10 до 150 нанометров получают каталитическим пиролизом этанола при атмосферном давлении. Катализатор в...
Тип: Изобретение
Номер охранного документа: 0002516548
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c861

Водорастворимая бактерицидная композиция

Изобретение относится к водорастворимой бактерицидной композиции. Композиция включает бактерицидную субстанцию повиаргол в количестве 2,1-7,0 мас.% и зостерин в количестве 1,1-7,0 мас.%. Технический результат заключается в синергетическом действии компонентов композиции и обеспечении...
Тип: Изобретение
Номер охранного документа: 0002517063
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
Показаны записи 31-40 из 175.
20.07.2014
№216.012.ddf2

Лазерочувствительные полимерные покрытия

Изобретение относится к лазерочувствительным полимерным покрытиям для записи информации с высоким разрешением на гидрофильных и гидрофобных поверхностях субстратов различной химической природы. Покрытие изготовлено из композиции, которая включает следующие компоненты: поли(о-гидроксиамид) в...
Тип: Изобретение
Номер охранного документа: 0002522604
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfe7

Способ отбраковки мощных светодиодов на основе ingan/gan

Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1
Тип: Изобретение
Номер охранного документа: 0002523105
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e266

Активный материал для мазера с оптической накачкой и мазер с оптической накачкой

Изобретение относится к квантовой электронике. Активный материал для мазера с оптической накачкой содержит кристалл карбида кремния, содержащего парамагнитные вакансионные дефекты. Мазер с оптической накачкой включает генератор (1) сверхвысокой частоты (СВЧ), циркулятор (2), магнит (3), между...
Тип: Изобретение
Номер охранного документа: 0002523744
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ec9c

Способ получения композитного волокна на основе гидролизного лигнина с полиакрилонитрилом

Изобретение относится к области получения композиционного волокна на основе гидролизного лигнина с полиакрилонитрилом и может быть использовано для формирования прекурсорных композитных волокон в качестве исходного материала для образования углеродных волокон повышенной прочности и...
Тип: Изобретение
Номер охранного документа: 0002526380
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ed80

Способ получения (2r,4r)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот

Изобретение относится к способу получения производных (2R,4R)-2-алкил-3-(2-меркаптобензоил)-1,3-тиазолидин-4-карбоновых кислот - потенциальных антигипертензивных веществ, ингибиторов ангиотензинпревращающего фермента (АПФ). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002526619
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
27.11.2014
№216.013.0a9a

Термостойкие адгезивы для соединения кристаллов и металлов с полиимидным основанием

Изобретение относится к термостойким адгезивам для соединения кристаллов и металлов с полиимидным основанием. Адгезивы (составы) содержат в качестве полимерного связующего новый преполимер - поли(о-гидроксиамид) - продукт реакции поликонденсации 3,3′-дигидрокси-4,4′-диаминодифенилметана и...
Тип: Изобретение
Номер охранного документа: 0002534122
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.181f

Полимер-неорганические нанокомпозиционные материалы на основе полиметилметакрилата с настраиваемым спектром фотолюминесценции

Изобретение относится к полимер-неорганическим композиционным материалам на основе полиметилметакрилата и наночастиц твердых растворов ZrO с лантанидами, выбранными из Eu, Tb и Tm. Такие нанокомпозиты предназначены для использования в оптике и оптоэлектронике, в частности могут быть применены в...
Тип: Изобретение
Номер охранного документа: 0002537603
Дата охранного документа: 10.01.2015
+ добавить свой РИД