×
10.01.2015
216.013.1c70

Результат интеллектуальной деятельности: УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины и может быть использовано для модификации поверхностного слоя объемных изделий, например кардиоимплантатов. Установка ионно-плазменной обработки изделий содержит: рабочую камеру с источником ионов; шлюзовую камеру; вакуумный затвор; системы вакуумирования, прогрева и охлаждения рабочей и шлюзовых камер; пневмосистему; системы управления и электропитания, а также систему позиционирования обрабатываемых изделий, включающую механизм перемещения рабочего стола. На рабочем столе расположены вертикальные шпиндели со звездочками, соединенными между собой замкнутой цепью, причем один из шпинделей с нижней стороны рабочего стола оснащен звездочкой или шестерней, которая выполнена с возможностью катиться по закрепленной на основании рабочей камеры рейке, на которой расположена цепь или соответственно зубчатая рейка, и вращать вертикальные шпиндели стола, в посадочные отверстия которых установлены легкосъемные поводки. На указанные поводки установлены малые шпиндели, выполненные с возможностью катиться своим шкивом по поверхности стола и вращаться вместе с установленными на них изделиями вокруг собственной оси, наклоненной под углом к поверхности стола. Изобретение обеспечивает возможность обработки объемных изделий сложной формы для получения заданной структуры и состава приповерхностного слоя изделия. 3 з.п. ф-лы, 10 ил.

Изобретение относится к вакуумным пучково-плазменным технологиям и может быть использовано для модификации поверхностного (приповерхностного) слоя различных пространственных объемных изделий, наприме, кардиоимплантатов в виде зонтичных устройств (окклюдеров) для улучшения их, например, биосовместимых, коррозионно-стойких, нетоксичных свойств перед их имплантаций в организм человека.

Известное устройство для ионно-лучевой обработки изделий медицинской техники (RU 2277934, A61L 2/00, A61L 2/14, опубл. 20.06.2006) содержит источник ионов, масс-сепаратор, формирователь пучка ионов и вакуумную камеру. В стенке вакуумной камеры выполнено отверстие для входа пучка ионов, а с противоположной стороны расположен приемник-регистратор ионов. В торцевой части камеры установлен с возможностью вращения диск с нечетным числом равномерно расположенных по периферии диска держателей для обрабатываемых изделий. Каждый держатель представляет собой стержень, установленный перпендикулярно поверхности диска с возможностью вращения вокруг собственной оси, а в верхней части стержня смонтированы опоры для обрабатываемых изделий. Известное устройство позволяет при более высокой производительности проводить равномерное ионное легирование (ионную имплантацию) поверхностного слоя множества одновременно обрабатываемых изделий с достижением необходимой глубины проникновения и концентрации имплантированных ионов.

Недостатком известного устройства является невозможность получения чистого вакуума, так как при смене обрабатываемых изделий в рабочую камеру при напуске атмосферного воздуха попадают пары воды, газов и других веществ, адсорбирующихся в камере и принимающих участие в имплантации поверхности медицинских изделий, что может вызвать осложнения после имплантации их во внутренние органы человека.

Недостатком известного устройства также является невозможность охвата ионной имплантацией всей поверхности пространственных изделий, что обусловлено двумя степенями свободы, причем вращение происходит вокруг параллельных осей, что еще более сужает возможности устройства.

Наиболее близким по технической сущности является плазменная установка "Яшма-3" (Приборы и техника эксперимента. 2004 г., №4, стр. 137-141; сайт Лаборатории 23 НИИЯФ ТПУ), содержащая реверсивную камеру; рабочую камеру; ионный имплантер; регуляторы расхода газа; вакуумный затвор; шлюзовую камеру; нижний и верхний источники света; монохроматор; фотоэлектрический усилитель (ФЭУ); трехгранный магнетрон; преобразователь частоты системы сканирования; затвор вакуумный электромеханический; турбомолекулярные высоковакуумные насосы.

Недостатком известной установки является наличие только одной степени свободы - перемещения рабочего стола вдоль продольной оси установки, что обеспечивает обработку только одной поверхности и не подходит для ионной имплантации всей поверхности пространственных (объемных) изделий.

Задачей предлагаемого изобретения является разработка установки ионно-плазменной обработки изделий, преимущественно пространственной (объемной) формы.

Предлагаемая установка позволит обрабатывать изделия, например кардиоимплантаты в виде устройств зонтичных (окклюдеров) объемной формы, например, потоками ионов кремния с целью модификации их поверхностного слоя для улучшения их, например, биосовместимых свойств путем получения заданной структуры и состава химических элементов приповерхностного слоя изделий.

Также предлагаемая установка расширяет ассортимент известных устройств аналогичного назначения.

Указанный технический результат достигается тем, что предлагаемая установка, как и известная, содержит рабочую камеру с источником ионов (имплантером), причем рабочая камера имеет три зоны: две реверсивные и посередине рабочую зону; шлюзовую камеру, при этом шлюзовая камера может быть отделена от рабочей вакуумным затвором; систему вакуумирования, систему прогрева и охлаждения рабочей и шлюзовых камер, пневмосистему, систему управления и систему электропитания.

Новым является то, что установка содержит систему позиционирования обрабатываемых изделий, состоящую: из механизма перемещения рабочего стола, выполненного с возможностью перемещения по направляющим рабочей и шлюзовой камер; каретки с тросовым приводом перемещения, механизмом зацепления и механизмом расцепления с рабочим столом, при этом тросовый привод перемещения состоит из барабана для намотки троса, направляющих блоков, вала, на котором барабан закреплен стяжными хомутами в положении, обеспечивающим наименьшее отклонение ветвей троса при его перематывании, причем вал барабана закреплен в двух радиально-сферических подшипниках, расположенных вне вакуумной зоны, с реверсивным электромеханическим приводом, обеспечивающим возвратно-поступательное движение рабочего стола, на котором расположены несколько вертикальных шпинделей со звездочками, соединенными между собой замкнутой цепью, а один из шпинделей с нижней стороны рабочего стола оснащен звездочкой или шестерней, которая выполнена с возможностью при движении стола катиться по закрепленной на основании рабочей камеры рейке, на которой расположена цепь или соответственно зубчатая рейка, и вращать вертикальные шпиндели стола, в посадочные отверстия которых установлены легкосъемные поводки, на которые установлены малые шпиндели, выполненные с возможностью при вращении вертикальных шпинделей катиться своим шкивом по поверхности стола и вращаться вместе с установленными на них изделиями вокруг собственной оси, наклоненной под углом к поверхности стола.

Кроме того, шлюзовая камера имеет загрузочную дверцу, выполненную с возможностью при ее открытии поворачивать дверцу вокруг двух цапф, расположенных на горизонтальной оси ниже загрузочной дверцы на боковых планках и перемещать их (цапфы) по «C»-образным пазам, причем при открытии-закрытии они (цапфы) расположены в нижних горизонтальных пазах, а при перемещении цапф вверх по вертикальным пазам и переводе их в верхние горизонтальные пазы и закреплении укосин внутренняя плоскость загрузочной дверцы (в этом положении) становится продолжением плоскости дна шлюзовой камеры, при этом на расположенные на ней направляющие из шлюзовой камеры возможно выкатывать рабочий стол, который после замены обрабатываемых изделий возможно легко перемещать внутрь шлюзовой камеры.

Кроме того, каретка выполнена с возможностью перемещения рабочего стола в сторону шлюзовой камеры двумя подпружиненными упорами, а в обратную сторону зацепом, выполненным в виде крюка с наклонной передней гранью, служащей для автоматического зацепления с планкой рабочего стола.

Кроме того, механизм расцепления с рабочим столом содержит шатунно-кривошипный механизм с ползуном, выполненный с возможностью при его (ползуна) движении навстречу каретке отжимать зацеп вниз за его передний скос и отделять зацеп от рабочего стола верхней пластиной ползуна, а при движении каретки от шлюзовой камеры рабочий стол остается в шлюзовой камере, так как зацеп выполнен с возможностью скользить по внутренней поверхности ползуна и освобождаться позади стола вне зоны зацепления с рабочим столом.

Предлагаемая установка ионно-плазменной обработки (УИПО) изделий представляет собой блок камер, установленный на трубчатый каркас. Блок камер собран в следующем порядке: шлюзовая камера, вакуумный затвор, рабочая камера с передней реверсивной, активной и задней реверсивной зонами (камерами). Все камеры имеют водяные рубашки для нагрева и охлаждения их. Нагрев и охлаждение камер осуществляется автоматически по программе, управляющей рабочим циклом от включения до остановки УИПО. Нагрев и охлаждение камер необходимы для получения более глубокого вакуума, что повышает качество обрабатываемых изделий.

Камеры выполняют следующие функции.

Шлюзовая камера служит для загрузки и выгрузки в установку обрабатываемых деталей при сохранении высокого вакуума в рабочей зоне. Загрузочная дверца шлюзовой камеры открывается вокруг горизонтальной оси. Она может быть опущена вниз, а при загрузке и выгрузке деталей занимает горизонтальное положение так, что образует продолжение основания шлюзовой и рабочей камер. На внутренней поверхности загрузочной дверцы расположены продолжения направляющих рабочего стола, на которые он может перемещаться, что сокращает время на перезагрузку. Сверху на шлюзовой камере устанавливается турбомолекулярный насос с затвором, клапаны вакуумной системы, обеспечивающие форвакуумную и высоковакуумную откачку шлюзовой камеры. В нижней части шлюзовой камеры располагается механизм расцепления рабочего стола и каретки.

Вакуумный затвор сохраняет высокий вакуум в рабочей камере при атмосферном или форвакуумном давлении в шлюзовой камере.

Передняя реверсивная зона рабочей камеры служит для выведения обрабатываемых изделий из зоны воздействия пучка ионного источника. Это необходимо для получения равномерной обработки всех изделий. Сверху передней реверсивной зоны рабочей камеры устанавливается главный турбомолекулярный насос с затвором и арматурой для подключения форвакуумного насоса.

Далее следует активная зона рабочей камеры, где непосредственно и происходит ионная имплантация. Сверху активной зоны рабочей камеры устанавливается источник ускоренных ионов, например кремния (имплантер) с энергией от 30 до 100 кэВ.

Рабочая камера завершается задней реверсивной зоной, которая помимо выведения обрабатываемых изделий из активной зоны служит местом размещения привода перемещения каретки. Заканчивается блок камер дверцей, предназначенной для ремонтно-профилактического обслуживания. Устанавливается блок камер на каркас из квадратных труб или стального проката. Внутри каркаса устанавливаются мало шумящие форвакуумные насосы, система подогрева воды и комплект клапанов для автоматического переключения горячей и холодной воды (от постороннего источника).

В УИПО входят также следующие системы: вакуумная система, система перемещения и позиционирования обрабатываемых деталей с механизмом зацепления, механизмом расцепления рабочего стола и каретки, система нагрева и охлаждения рабочей и шлюзовых камер, пневматическая система, система управления и система электропитания.

Установка ионно-плазменной обработки иллюстрируется фигурами 1-10.

На фиг. 1 представлен общий вид предлагаемой установки, на котором: рабочая камера - 1, источник ионов (имплантер) - 2; шлюзовая камера - 3; вакуумный затвор - 4.

На фиг. 2 отмечены зоны рабочей камеры: активная зона - 1а, передняя реверсивная зона - 1б, задняя реверсивная зона - 1в, источник ионов (имплантер) - 2; шлюзовая камера - 3; вакуумный затвор - 4.

На фиг. 3 представлена система позиционирования с механизмом перемещения, на котором рабочий стол - 5, направляющие рабочей камеры - 6, направляющие шлюзовой камеры - 7; каретка с тросовым приводом - 8, механизм зацепления - 9, механизм расцепления - 10, барабан - 11, направляющие блоков - 12, вал - 13, реверсивный электромеханический привод - 14, рабочая рейка - 19, цепь - 20.

На фиг. 4 представлены: вертикальные шпиндели - 15, рабочий стол - 5.

На фиг. 5 представлены: звездочки - 16, замкнутая цепь - 17.

На фиг. 6 представлены: нижняя звездочка - 18, планка рабочего стола - 31.

На фиг. 7 представлены: легкосъемные вильчатые поводки - 21, малые шпиндели - 22, на которые устанавливают обрабатываемые изделия.

На фиг. 8,а представлены: загрузочная дверь - 23, шлюзовая камера - 3, цапфы - 25, планки с «С»-образные пазами - 26, планки укосин - 27, направлявшие шлюзовой камеры - 7, направляющие загрузочной двери - 28.

На фиг. 8,б представлены: загрузочная дверь - 23, смотровое окно - 24.

На фиг. 9 представлены: каретка - 8, подпружиненные упоры - 29, зацеп - 30

На фиг. 10 представлены: шатунно-кривошипный механизм - 32, ползун - 33, рукоятка - 34, приводящая в действие весь механизм.

Предлагается установка работает следующим образом.

Исходное положение - в рабочей зоне (1а) высокий вакуум; вакуумный затвор (4) закрыт, дверца (23) шлюзовой камеры (3) в положении приемного столика, рабочий стол (5) на приемном столике.

Устанавливаются легкосъемные вильчатые поводки (21) в шпиндели (15) рабочего стола, на них устанавливаются малые шпиндели (22) и обрабатываемые изделия, например устройства зонтичные (окклюдеры). Рабочий стол (5) перемещается в шлюзовую камеру (3). Закрывается дверца (23) шлюзовой камеры (3). В шлюзовой камере (3) достигается высокий вакуум, вакуумный затвор (4) открывается и рабочий стол (5) перемещается в рабочую зону (1а), где совершает возвратно-поступательные движения под контролем датчиков положения. Количество проходов определяется технологическим процессом и задается в программе. В процессе перемещения рабочего стола (5), на котором расположены несколько вертикальных шпинделей (15) со звездочками (16), соединенными между собой замкнутой цепью (17), если их больше одного. Один из шпинделей (ведущий) с нижней стороны стола оснащен звездочкой (18) или шестерней, которая при движении стола катится по закрепленной на основании камеры рейке (19). На ней расположена цепь (20) или, соответственно, зубчатая рейка, которая приводит во вращение шпиндели (15) стола. В посадочные отверстия с пазом сначала устанавливают легкосъемные поводки (21), на которые затем устанавливают малые шпиндели (22). При вращении вертикальных шпинделей (15) они катятся своим шкивом по поверхности рабочего стола (5) и вращаются вместе с установленными на них изделиями вокруг собственной оси, наклоненной под углом к поверхности рабочего стола.

Таким образом, обрабатываемые изделия совершают:

- продольное перемещение с рабочим столом,

- орбитальное вращение вокруг оси вертикального шпинделя,

- и вокруг собственной наклонной оси,

занимая оптимальное положение относительно пучка и обеспечивая наиболее равномерную обработку всей поверхности обрабатываемого изделия.

При необходимости, для более полного воздействия на все участки поверхности обрабатываемых изделий малые шпиндели (22) могут заменяться другими, которые позволяют позиционировать обрабатываемые изделия иным образом, для достижения необходимого результата, то есть провести обработку изделия с нескольких установок.

После завершения обработки рабочий стол (5) переводится в шлюзовую камеру (3), производится расцепление его с кареткой (8), которая отводится в заднее положение. Вакуумный затвор (4) закрывается, следует напуск воздуха в шлюзовую камеру (3). Дверца (23) шлюзовой камеры (3) открывается и переводится в положение загрузочного столика. Обработанные изделия заменяются на необработанные.

В конструкции УИПО предусмотрены блокировки на случаи ошибочных команд, которые могут привести к нарушению технологического процесса и другим нежелательным последствиям.


УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
УСТАНОВКА ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 77.
20.01.2018
№218.016.101c

Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью

Изобретение относится к медицине. Описан способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью. Способ включает лазерную вырезку заготовки стента, термомеханическую...
Тип: Изобретение
Номер охранного документа: 0002633639
Дата охранного документа: 16.10.2017
14.09.2018
№218.016.87f1

Способ синтеза рентгеноконтрастного поверхностного ti-ta-ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из tini сплава

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ синтеза рентгеноконтрастного поверхностного Ti-Ta-Ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из TiNi сплава, осуществляемый аддитивным методом путем многократного...
Тип: Изобретение
Номер охранного документа: 0002666950
Дата охранного документа: 13.09.2018
27.10.2018
№218.016.971c

Способ автоматического построения модели гетерогенной волокнистой внутренней структуры композиционного материала

Изобретение относится к области компьютерного проектирования и может быть использовано при решении задач дизайна внутренней структуры композиционных материалов (КМ), армированных волокнами. Cпособ автоматического построения компьютерной модели гетерогенной волокнистой внутренней структуры...
Тип: Изобретение
Номер охранного документа: 0002670922
Дата охранного документа: 25.10.2018
06.12.2018
№218.016.a3f7

Экструдируемый антифрикционный композит на основе сверхвысокомолекулярного полиэтилена

Изобретение относится к экструдируемому антифрикционному композиту на основе сверхвысокомолекулярного полиэтилена и может быть использовано для получения антифрикционных изделий в узлах трения в машиностроении и медицине с применением аддитивных технологий. Композит содержит...
Тип: Изобретение
Номер охранного документа: 0002674019
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a4c1

Иерархически армированный гетеромодульный экструдируемый твердосмазочный нанокомпозит на основе свмпэ и способ его получения

Изобретение относится к области получения высокопрочных, износостойких и экструдируемых полимерных нанокомпозитов на основе сверхвысокомолекулярного полиэтилена для трибоузлов, в том числе работающих в экстремальных условиях Крайнего Севера. Предложен иерархически армированный гетеромодульный...
Тип: Изобретение
Номер охранного документа: 0002674258
Дата охранного документа: 06.12.2018
19.12.2018
№218.016.a8c0

Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки

Группа изобретений относится к получению металлического порошка на основе нано- и микрочастиц. Способ включает электрический взрыв металлической проволоки в реакторе и сепарацию частиц по размерам. В реакторе обеспечивают принудительную циркуляцию газовой среды при скорости газового потока на...
Тип: Изобретение
Номер охранного документа: 0002675188
Дата охранного документа: 17.12.2018
20.02.2019
№219.016.c40c

Способ нанесения теплозащитного покрытия

Изобретение относится к вакуумной технологии нанесения теплозащитных покрытий на изделия из меди и может быть использовано в авиа- и машиностроении и других областях. Способ нанесения теплозащитного покрытия включает размещение изделия в вакуумной камере. Затем осуществляют наноструктурирование...
Тип: Изобретение
Номер охранного документа: 0002467878
Дата охранного документа: 27.11.2012
19.04.2019
№219.017.31c6

Способ получения керамического градиентного материала

Изобретение относится к порошковой металлургии, в частности к изготовлению градиентых керамических материалов на основе диоксида циркония. Высокодисперсный порошок в виде пересыщенных твердых растворов на основе ZrO с растворенными в нем компонентами, выбранными из группы оксидов-стабилизаторов...
Тип: Изобретение
Номер охранного документа: 0002454297
Дата охранного документа: 27.06.2012
31.05.2019
№219.017.7097

Способ автоматизированного построения трехмерной модели гетерогенной структуры композиционного материала с волокнами

Изобретение относится к области вычислительной техники. Технический результат заключается в сокращении временных и вычислительных ресурсов на создание трехмерной модели гетерогенной структуры композиционного материала. Способ содержит следующие этапы: задание входных данных модели КМ; разбиение...
Тип: Изобретение
Номер охранного документа: 0002689803
Дата охранного документа: 29.05.2019
29.06.2019
№219.017.9fac

Шихта для композиционного катода и способ его изготовления

Изобретение относится к порошковой металлургии, в частности к получению композиционных катодов для ионно-плазменного напыления многокомпонентных наноструктурных покрытий. Может использоваться в химической, станкоинструментальной промышленности, машиностроении и металлургии. Шихта для...
Тип: Изобретение
Номер охранного документа: 0002454474
Дата охранного документа: 27.06.2012
Показаны записи 51-60 из 70.
20.01.2018
№218.016.101c

Способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с модифицированной поверхностью

Изобретение относится к медицине. Описан способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью. Способ включает лазерную вырезку заготовки стента, термомеханическую...
Тип: Изобретение
Номер охранного документа: 0002633639
Дата охранного документа: 16.10.2017
09.06.2018
№218.016.5f51

Способ получения синтетической нефти

Настоящее изобретение относится к способу получения синтетической нефти из продуктов синтеза Фишера-Тропша, включающий гидрирование смеси синтетических углеводородов в реакторе с неподвижным слоем никельсодержащего катализатора в токе газа гидрирования, включающего моноксид углерода и водород....
Тип: Изобретение
Номер охранного документа: 0002656601
Дата охранного документа: 06.06.2018
17.08.2018
№218.016.7bd4

Способ переработки природного/попутного газа в синтез-газ автотермическим риформингом

Изобретение относится к газохимии и касается получения синтез-газа посредством переработки природного/попутного газа в процессе автотермического риформинга. Способ включает пропускание предварительно подогретой до 300-500°C газосырьевой смеси, состоящей из природного/попутного газа, пара и...
Тип: Изобретение
Номер охранного документа: 0002664063
Дата охранного документа: 14.08.2018
17.08.2018
№218.016.7bd9

Компактный реактор для получения синтез-газа из природного/попутного газа в процессе автотермического риформинга

Изобретение относится к газохимии и касается реакторов для получения синтез-газа из природного/попутного газа в процессе автотермического риформинга. Реактор включает реакторные каналы, частично заполненные катализатором и расположенные параллельно продольной оси реактора, боковой патрубок...
Тип: Изобретение
Номер охранного документа: 0002664138
Дата охранного документа: 15.08.2018
14.09.2018
№218.016.87f1

Способ синтеза рентгеноконтрастного поверхностного ti-ta-ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из tini сплава

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ синтеза рентгеноконтрастного поверхностного Ti-Ta-Ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из TiNi сплава, осуществляемый аддитивным методом путем многократного...
Тип: Изобретение
Номер охранного документа: 0002666950
Дата охранного документа: 13.09.2018
14.11.2018
№218.016.9ce2

Катализатор гидрирования олефинов в процессе получения синтетической нефти и способ его синтеза (варианты)

Изобретение относится к катализатору гидрирования олефинов в процессе получения синтетической нефти. Заявляется катализатор, содержащий 41-60 мас.% никеля от массы прокаленного катализатора и носитель, представляющий собой мезопористый оксид алюминия со средним размером частиц 3-7 нм, общим...
Тип: Изобретение
Номер охранного документа: 0002672269
Дата охранного документа: 13.11.2018
15.11.2018
№218.016.9d78

Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения

Изобретение относится к катализатору для получения синтетических углеводородов с высоким содержанием изоалканов, представляющему собой смесь цеолита и базового катализатора синтеза Фишера-Тропша, носителем которого служит оксид алюминия. При этом цеолит имеет мезопористую мелкокристаллическую...
Тип: Изобретение
Номер охранного документа: 0002672357
Дата охранного документа: 14.11.2018
15.12.2018
№218.016.a814

Способ получения микро-мезопористых наноматериалов на основе складчатых нанолистов оксигидроксида алюминия и материал, полученный данным способом

Изобретение относится к получению наноразмерных материалов, пригодных для сорбции биологических сред и биомолекул и может быть использовано в медицине и фармакологии. Для получения микро-мезопористого наноматериала на основе оксигидроксида алюминия осуществляют гидротермальное окисление...
Тип: Изобретение
Номер охранного документа: 0002674952
Дата охранного документа: 13.12.2018
27.12.2018
№218.016.ac59

Электролит для электрополировки поверхности внутрисосудистого стента из никелида титана и способ его приготовления

Изобретение относится к изготовлению внутрисосудистых имплантатов из сплава на основе никелида титана с эффектом памяти формы и сверхэластичности, предназначенных для длительной эксплуатации в кровеносных сосудах организма и обладающих высокой биосовместимостью в биологических средах....
Тип: Изобретение
Номер охранного документа: 0002676115
Дата охранного документа: 26.12.2018
15.02.2019
№219.016.ba81

Катализатор для получения синтетических легких олефинов c-c из синтез-газа и способ его получения

Катализатор для получения легких олефинов С-С по методу Фишера-Тропша содержит кобальт и железо на мезопористом носителе, представляющем собой мезопористый оксид алюминия со средним диаметром пор 6-12 нм, общим объемом пор 0,85-1,10 см/г, долей мезопор не менее 90% и удельной площадью...
Тип: Изобретение
Номер охранного документа: 0002679801
Дата охранного документа: 13.02.2019
+ добавить свой РИД