×
10.01.2015
216.013.1b6d

Результат интеллектуальной деятельности: СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к области оптической связи. Согласно способу используют лазерный луч, который состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции. Импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения. Из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения. Последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения. Для передачи информации формируют двоичный код. Технический результат - увеличение дальности оптической связи за счет лучшего прохождения сигналов через ослабляющие участки трассы. 4 ил.
Основные результаты: Способ увеличения дальности высокоскоростных открытых оптических каналов связи с подводными объектами, заключающийся в том, что для организации оптической связи используют лазерный луч, отличающийся тем, что лазерный луч состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции, а также в нелинейной среде за счет дисперсии скоростей волн различных частот, при этом явления, обусловленные межмодовыми биениями, приводят к формированию импульсного излучения, причем импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения, а из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения, причем вид оптических импульсов, формируемых частотой f=5,63762·10 Гц с межмодовым интервалом Δf=5 МГц, с частотой следования 5 МГц и полушириной Δf=20 нс, используя частотную модуляцию (чирпирование), формируют импульсы с одинарным двойным периодом следования, при этом последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения, формируют двоичный код для передачи информации.

Настоящее изобретение относится к области оптической связи, а именно к технике передачи и приема информации с помощью лазерной связи.

Несмотря на повсеместное распространение радиосвязи, на флоте постоянно используется оптическая система передачи информации с помощью лазерной связи или прожекторов [А.А. Катанович, Ю.Л. Николашин. Корабельные оптические системы связи. Судостроение, СПб., 2009, 239 с.].

Лазерные системы связи воздушного базирования могут быть установлены на всех самолетах противолодочной обороны наземного и палубного базирования, самолетах-ретрансляторах и воздушных командных пунктах. Для управления подводными лодками, действующими в условиях быстро меняющейся тактической обстановки, требуется передача в их адрес данных в реальном масштабе времени. Такая передача осуществляется с использованием узкого лазерного луча с самолета на подводную лодку.

Однако на надежность лазерной линии связи оказывает влияние облачность, туман, осадки и некоторые другие факторы.

Известна «Оптическая система открытой связи». Катанович А.А. и др. Патент РФ на ПМ №62316. Бюл. №9, 2007. Оптическая система состоит из оптического передатчика (лазера), нелинейного оптического элемента, сепаратора, дифференциального усилителя и оптического приемника (фотодиода).

Система обеспечивает возможность передачи информации как в цифровом, так и в аналоговом виде в открытых оптических линиях связи. Однако на надежность оптической связи оказывают влияние облачность, туман, морось и т.д.

Известен Способ оптической сигнализации в тумане. Авторское свидетельство СССР №527729, 1976. По данному способу, с целью увеличения дальности связи, соосно со световым лучом формируют малорасходящийся пучок инфракрасного излучения. Недостатком такого способа является недостаточная яркость светящейся зоны.

Целью изобретения является увеличение дальности оптической связи за счет лучшего прохождения сигналов через ослабляющие участки трассы.

Поставленная цель достигается тем, что способ увеличения дальности высокоскоростных открытых оптических каналов связи, заключающийся в том, что для организации оптической связи используют лазерный луч, при этом лазерный луч состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции, а также в нелинейной среде за счет дисперсии скоростей волн различных частот, причем явления, обусловленные межмодовыми биениями, приводят к формированию импульсного излучения, при этом импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения, а из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения, причем вид оптических импульсов, формируемых частотой fo=5,63762·1014 Гц с межмодовым интервалом Δf=5 МГц, с частотой следования 5 МГц и полушириной Δf=20 нс, используя частотную модуляцию (чирпирование), формируют импульсы с одинарным двойным периодом следования, при этом последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения, за счет чирпирования частоты спектра лазерного излучения формируют двоичный код для передачи информации.

Необходимо отметить, что в предлагаемом способе формирования наносекундных и более коротких импульсов имеется принципиальное отличие, связанное с использованием межмодовых биений. Эти биения представляют собой взаимодействие (интерференционный эффект) смешанных на межмодовый интервал спектральных составляющих излучения.

Рассмотрим передачу информационного сигнала с помощью интерференционного потока. Интерференционный поток двух потоков электромагнитных волн осциллирует в направлении их распространения. В интерференционном поле, сформированном в ослабляющей среде, потери энергии оптического излучения происходят лишь в области светлых полос. Шаг интерференционной картины составляет, , а скорость перемещения интерференционных полос , к=к1к2 - величина векторная, где к1 и к2 - волновые векторы интерферирующих лучей. При этом максимумы интерференционной картины будут перемещаться с групповой скоростью.

Волновые векторы отдельных спектральных компонент параллельны. Поэтому для спектральных компонент (необходимо для формирования коротких импульсов) с межмодовым интервалом 10 МГц групповая скорость в воздухе вдали от линии поглощения совпадает с фазовой (скорость света). Для двух интерферирующих волн огибающая суммарной волны описывается синусоидой, а при увеличении числа составляющих происходит локализация энергии волн в узкой области максимума интерференционной полосы.

Биение потоков излучений на разных частотах может наблюдаться как в резонаторе лазера, так и на трассе распространения. Межмодовый интервал резонатора можно определить из соотношения Δf=с (2L)-1, где L - длина резонатора; с - скорость света. Теоретическая полуширина линии генерации лазера в одночастотном режиме (ширина линии одной модовой составляющей) Δv=2πhνp-1(Δνp)2, где p - мощность лазера; Δvp=v/Q - полуширина полосы пропускания резонатора - добротность резонатора; r1, r2 - коэффициенты отражения зеркал резонатора; λ - длина волны излучения). Углы распространения поперечных мод составляют , где m=1,2,3,… - номер модовой составляющей. Поперечные моды, распространяющиеся под углом к оптической оси лазера, пройдя некоторое расстояние по открытым трассам, уходят из пучка. Для L=1,0 м и длины волны излучения 0,8 мкм это расстояние менее 10 м, что подтверждает справедливость вывода о совпадении групповой скорости (скорости перемещения интерференционных полос) со скоростью света.

Произведем расчет. Электрическую составляющую световой волны (как и магнитную составляющую) можно представить в виде

где l - координата по направлению распространения излучения; ωi=2πfi.

При синхронизованной во времени генерации лазером одновременно N спектральных компонент (модовых составляющих) значение амплитуды в разных точках трассы может быть определено путем сложения амплитуд отдельных компонент (с учетом знаков спектральных составляющих и ширины спектра каждой моды):

Как известно, мощность электромагнитного излучения вдоль трассы распространения в ослабляющей среде уменьшается по экспоненциальному закону (закон Бугера): I=Io exp(-αz), где α - коэффициент ослабления.

Интенсивность излучения I пропорциональна квадрату амплитуды электрической составляющей электромагнитной волны.

При изучении возможности передачи сигнала через ослабляющие участки оптических каналов связи с использованием интерференционного потока были проведены расчеты коэффициентов пропускания для различных относительных положений ослабляющего участка и фазы коротких (10-9 с) периодически импульсов излучения (5 МГц). Для формирования периодических лазерных импульсов путем когерентного суммирования нескольких составляющих синхронизовать фазы отдельных спектральных компонент. Для простоты расчетов начальные фазы волн в формуле (2) принимались равными нулю.

Расчеты показали, что при интерференции 150 модовых составляющих амплитуда сигнала, прошедшего через участок длиной 66 м с коэффициентом ослабления 0,17 м-1, составляет 98% от начальной величины. Интенсивность рассчитывали для моментов времени, отстоящих друг от друга на 10-13 с. Ослабляющий участок располагался в области преимущественно туннельной передачи энергии излучения симметрично относительно импульсов.

Проводимые расчеты заключаются в следующем. В начальной точке (с нулевой координатой) находили сумму амплитудных значений всех гармонических составляющих. Для остальных расчетных точек трассы оптического пучка интенсивность сигнала определялась путем сложения гармонических сигналов с учетом их знаков (значение косинуса) - векторное сложение. Для определения интенсивности излучения сумма возводилась в квадрат и умножалось на коэффициент с/8π, так как интенсивность света связана с комплексной амплитудой волны

Расчет ослабления проводился двумя путями. В первом случае (скалярное некогерентное сложение волн) для определения суммарной начальной интенсивности все спектральные составляющие складывались по интенсивности (квадраты амплитуд). Полученную величину умножали на коэффициент с/8π. По закону Бугера определялась интенсивность суммарной волны после ослабляющего слоя. Без ослабляющего участка интенсивность излучения некогерентного пучка оставалась постоянной по всей длине трассы его распространения.

Для пучка из когерентных составляющих в каждой точке трассы производилось векторное суммирование волн на разных длинах волн. Для ослабляющего участка по закону Бугера определялось изменение эффективного значения интенсивности каждой гармонической составляющей между двумя расчетными точками с учетом отношения величин суммарной интенсивности в текущей точке к интенсивности некогерентного пучка. На следующем расчетном участке значения амплитуд напряженностей электрического поля отдельных волн были заменены их уменьшенными значениями на конце предыдущего участка, определяемого из выражения

где α - коэффициент ослабления; Δl - длина расчетного участка; δIo - коэффициент, определяющий величину изменения интенсивности когерентного излучения относительно некогерентного на расчетном участке за счет интерференционного потока.

Как видно из фиг.1, между двумя максимумами наблюдаются незначительные спадающие всплески интенсивности. Область минимальных значений дополнительных импульсов находится посредине между двумя импульсами. Поскольку рассчитывался коэффициент прохождения через ослабляющий участок трассы, расположенный симметрично относительно середины между импульсами, что обеспечивает наилучшие условия прохождения потока оптического излучения (минимальное ослабление).

Зависимость коэффициента пропускания ослабляющего участка от спектрального состава для различных значений оптической плотности показана на фиг.2. Видно, что при увеличении числа спектральных составляющих, независимо от оптической плотности ослабляющего участка, наблюдается увеличение коэффициента пропускания потока лазерного излучения. При сдвиге составляющих 5 МГц период биения между различными спектральными составляющими излучения с центральной частотой fo=5,637362·1014 Гц равен 60,81 м. Коэффициент прохождения лазерного излучения через ослабляющий слой рассчитан для участка длиной 53,38 м, расположенного симметрично между интерференционными максимумами.

Для сравнения с полученными результатами был рассчитан коэффициент прохождения потока некогерентного излучения, имеющего тот же спектральный состав, что и когерентный пучок. Зависимость коэффициента прохождения лазерного и некогерентного излучений через ослабляющий участок от его длины показана на фиг.3. При этом коэффициент пропускания для участка с коэффициентом ослабления 0,05 м-1 составляет 0,056; для участка с 0,15 м-1 - 1,78·10-4; для ослабляющего слоя с 0,3 м-1 и более - практически равен нулю (менее 10-7). Таким образом, когерентный пучок (сплошные линии на фигурах) проходит через ослабляющий слой с гораздо меньшими потерями, чем некогерентный (пунктирные линии).

На фиг.4 приведены графики зависимостей коэффициента прохождения через ослабляющий слой лазерного (сплошные линии) и некогерентного (пунктирные линии) излучений от спектрального состава. Расчеты показывают, что когерентный пучок распространяется по ослабляющим трассам с гораздо меньшими потерями, чем некогерентный. Изменения спектрального состава (частоты сдвига соседних компонент Δf) при этом сказываются незначительно. Данные рассчитывались для ослабляющего слоя, расположенного симметрично и занимающего 96% расстояния между максимумами интерференции, при изменении величины спектрального сдвига между компонентами.

Данные, приведенные на фиг.3 и 4, рассчитаны для N=120 составляющих. Интенсивность некогерентного пучка уменьшается в ослабляющем слое по экспоненциальному закону (Δf=5 МГц). При малых значениях отношения длины ослабляющего участка к расстоянию между максимумами интерференции (Δl=55 м) влияние ослабляющего слоя незначительно. При совмещении области максимума интерференции с ослабляющим слоем потери излучения возрастают.

Уменьшение коэффициента пропускания слоя при уменьшении величины сдвига спектральных компонент происходит из-за увеличения расстояния между максимумами интенсивности. При этом синхронно увеличивается длина ослабляющего слоя, учитываемого при расчетах. Графики на фиг.4 позволяют оценить соотношение коэффициентов когерентного и некогерентного пучков различного спектрального состава с предельной для когерентного пучка длиной ослабляющего слоя.

Таким образом, приведенные расчеты свидетельствуют о существовании принципиальной возможности передачи потока когерентного оптического излучения через ослабляющие участки (дождь, туман, облачность и т.п.) открытых атмосферных трасс с использованием интерференционного потока. При этом становится возможной передача оптического излучения на большие расстояния по открытым атмосферным каналам связи.

Способ увеличения дальности высокоскоростных открытых оптических каналов связи с подводными объектами, заключающийся в том, что для организации оптической связи используют лазерный луч, отличающийся тем, что лазерный луч состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции, а также в нелинейной среде за счет дисперсии скоростей волн различных частот, при этом явления, обусловленные межмодовыми биениями, приводят к формированию импульсного излучения, причем импульсы лазерного излучения длительностью 1 нс и менее формируются за счет синхронизации модовых составляющих и их когерентного взаимодействия на трассе распространения, а из множества непрерывных модовых составляющих формируют импульсно-периодические оптические импульсы, период следования которых определяется спектральным составом лазерного излучения, причем вид оптических импульсов, формируемых частотой f=5,63762·10 Гц с межмодовым интервалом Δf=5 МГц, с частотой следования 5 МГц и полушириной Δf=20 нс, используя частотную модуляцию (чирпирование), формируют импульсы с одинарным двойным периодом следования, при этом последовательность импульсов воспринимается фотоприемником как наличие (или отсутствие) в заданные моменты времени импульса излучения за счет чирпирования частоты спектра лазерного излучения, формируют двоичный код для передачи информации.
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
СПОСОБ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ ВЫСОКОСКОРОСТНЫХ ОТКРЫТЫХ ОПТИЧЕСКИХ КАНАЛОВ СВЯЗИ С ПОДВОДНЫМИ ОБЪЕКТАМИ
Источник поступления информации: Роспатент

Показаны записи 51-58 из 58.
29.12.2017
№217.015.fe23

Автоматизированный корабельный комплекс светосигнальной связи

Автоматизированный корабельный комплекс светосигнальной связи содержит прибор оптической связи направленного действия, прибор оптической связи всенаправленного действия, блок электропитания, автоматизированное рабочее место оператора (АРМ), общекорабельную систему стабилизации качки корабля,...
Тип: Изобретение
Номер охранного документа: 0002638057
Дата охранного документа: 11.12.2017
20.01.2018
№218.016.10f5

Цифровой комплекс спутниковой системы связи

Изобретение относится к радиоэлектронным системам связи с использованием радиоизлучения при размещении станции в морском мобильном объекте и может быть использовано в качестве бортовой станции системы спутниковой связи. Технический результат – расширение функциональных возможностей на основе...
Тип: Изобретение
Номер охранного документа: 0002633911
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.11f8

Способ формирования многочастотного сигнала

Изобретение относится к области радиотехники и связи и может быть использовано для улучшения линейности усиления многочастотных сигналов. Технический результат заключается в снижении динамического диапазона многочастотных сигналов. Предложенный способ позволяет определить начальные фазы...
Тип: Изобретение
Номер охранного документа: 0002634188
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1931

Способ установления битовой синхронизации псевдослучайных последовательностей с использованием принципов декодирования

Изобретение относится к технике связи и может быть использовано в системах передачи данных. Техническим результатом является уменьшение времени на установление битовой синхронизации между принимаемой псевдослучайной последовательностью и последовательностью, вырабатываемой в приемнике, при...
Тип: Изобретение
Номер охранного документа: 0002636094
Дата охранного документа: 20.11.2017
20.01.2018
№218.016.1d23

Устройство передачи информации с подводной лодки бесконтактным методом

Изобретение относится к области радиотехники и может быть использовано для передачи сообщений с подводной лодки, находящейся в погруженном состоянии. Технический результат состоит в передаче сообщений с подводной лодки бесконтактным методом. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002640577
Дата охранного документа: 10.01.2018
13.02.2018
№218.016.2352

Автоматическое аварийное устройство для остановки прокладываемого подводного кабеля

Изобретение относится к области судостроения и может быть использовано на кабельных судах для аварийной остановки прокладываемого подводного кабеля. Предложено устройство для аварийной остановки прокладываемого подводного кабеля, содержащее корпус со смонтированными в нем силовым электрическим...
Тип: Изобретение
Номер охранного документа: 0002642025
Дата охранного документа: 23.01.2018
17.02.2018
№218.016.2d5f

Устройство оценки частоты гармонического зашумлённого сигнала

Изобретение относится к области электрорадиотехники и может быть использовано в измерительной технике, в системах передачи данных и системах радиолокации для оценки частоты принимаемого сигнала. Техническим результатом заявленного изобретения является повышение точности определения частоты...
Тип: Изобретение
Номер охранного документа: 0002643708
Дата охранного документа: 05.02.2018
17.02.2018
№218.016.2e03

Способ оценки вероятности ошибки на бит по результатам декодирования кодовых слов

Изобретение относится к области радиосвязи. Технический результат - повышение скорости передачи данных за счет оценки вероятности ошибки на бит при кодировании с помощью линейного блока помехоустойчивого кода. Способ оценки вероятности ошибки на бит, при котором источник сообщений формирует...
Тип: Изобретение
Номер охранного документа: 0002643571
Дата охранного документа: 02.02.2018
Показаны записи 91-100 из 105.
21.04.2023
№223.018.5037

Устройство для видения подводных объектов

Использование: изобретение относится к системам лидаров и лазерного видения объектов в рассеивающих свет оптических средах (вода, туман, атмосферная дымка) и может быть использовано в системах лазерной локации для обнаружения и распознавания различных объектов, например, подводных объектов....
Тип: Изобретение
Номер охранного документа: 0002794167
Дата охранного документа: 12.04.2023
21.04.2023
№223.018.5039

Устройство для видения подводных объектов

Использование: изобретение относится к системам лидаров и лазерного видения объектов в рассеивающих свет оптических средах (вода, туман, атмосферная дымка) и может быть использовано в системах лазерной локации для обнаружения и распознавания различных объектов, например, подводных объектов....
Тип: Изобретение
Номер охранного документа: 0002794167
Дата охранного документа: 12.04.2023
23.05.2023
№223.018.6bb1

Способ повышения помехоустойчивости и пропускной способности приемных каналов связи

Изобретение относится к антенной технике и служит для обеспечения приема сигналов спутниковых систем связи и навигации в диапазоне дециметровых волн подвижными морскими объектами и автономными необитаемыми подводными аппаратами, использующими кабельные антенны. Технический результат заключается...
Тип: Изобретение
Номер охранного документа: 0002780310
Дата охранного документа: 21.09.2022
23.05.2023
№223.018.6c1b

Активное передающее широкополосное антенное устройство св-диапазона

Изобретение относится к антенной технике и может быть использовано для излучения радиоволн средневолнового (СВ) диапазона. Техническим результатом является создание широкополосного антенного устройства СВ-диапазона с активными излучателями без элементов подстройки во всем средневолновом...
Тип: Изобретение
Номер охранного документа: 0002736812
Дата охранного документа: 20.11.2020
23.05.2023
№223.018.6c54

Приемно-передающая станция телефонной связи водолазов с судном сопровождения

Изобретение относится к технике подводной связи, в частности к средствам коммуникаций водолазов, и может быть использовано для связи водолазов при работе с сопровождающим судном или береговым постом. Приемно-передающая станция гидроакустической телефонной связи водолазов содержит микрофонный...
Тип: Изобретение
Номер охранного документа: 0002730760
Дата охранного документа: 25.08.2020
27.05.2023
№223.018.71f8

Автоматизированный корабельный комплекс связи

Изобретение относится к области радиотехники, а именно к технике автоматизированных корабельных комплексов связи, и может быть использовано для организации связи на надводных кораблях. Технический результат состоит в увеличении помехозащищенности каналов связи автоматизированного корабельного...
Тип: Изобретение
Номер охранного документа: 0002796120
Дата охранного документа: 17.05.2023
05.06.2023
№223.018.7750

Аналого-цифровой преобразователь для цифрового радиопередатчика

Изобретение относится к области цифровой техники, в частности к устройствам преобразования аналогового напряжения в цифровой код. Технический результат - осуществление работы цифровых коротковолновых радиопередатчиков при передаче помехозащищенного многочастотного сигнала. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002761554
Дата охранного документа: 09.12.2021
05.06.2023
№223.018.7789

Корабельная тропосферная радиостанция

Изобретение относится к области радиосвязи и может быть использовано при создании корабельной тропосферной радиостанции. Технический результат состоит в повышении стабильности работы радиостанции, а также защищенности радиосвязи от преднамеренных помех. Для этого обеспечивают снижение...
Тип: Изобретение
Номер охранного документа: 0002756063
Дата охранного документа: 27.09.2021
05.06.2023
№223.018.77c7

Аварийная система сотовой радиосвязи подводной лодки

Изобретение относится к области радиотехники и связи и может быть использовано для обеспечения аварийной связи подводной лодки (ПЛ). Технический результат заключается в обеспечении аварийной сотовой радиотелефонной связи подводной лодки при нахождении ее в базе или на переходе. Система сотовой...
Тип: Изобретение
Номер охранного документа: 0002744133
Дата охранного документа: 03.03.2021
06.06.2023
№223.018.77fa

Учебно-тренировочный комплекс связи надводного корабля

Изобретение относится к учебно-техническим средствам и может быть использовано для обеспечения учебных мероприятий боевой подготовки и образовательного процесса в условиях учебных центров и военно-учебных заведений ВМФ. Учебно-тренировочный комплекс связи надводного корабля содержит рабочие...
Тип: Изобретение
Номер охранного документа: 0002783021
Дата охранного документа: 08.11.2022
+ добавить свой РИД