×
10.01.2015
216.013.19f0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СИЛЫ РЕЗАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и касается, в частности, определения силы, необходимой для обработки резанием металлов и сплавов. Сущность: стандартную экспериментальную кривую упрочнения перестраивают в координаты «напряжение (σ) - истинная относительная деформация (ε)», максимальным значением деформации ε предопределяют предельно возможное значение коэффициента усадки стружки K, как lnK=ε, а расчет предельно возможной величины силы резания вычисляют по уравнению Р=σt s К/sinθ, затем ведут пробную резку, измеряют параметры для вычисления фактического коэффициента К усадки стружки, по нему определяют угол θ и по исходному уравнению находят фактическую величину силы резания. Технический результат: повышение точности расчета и существенный рост производительности за счет сокращения технико-экономических затрат на его реализацию. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и касается, в частности, определения силы, необходимой для обработки резанием металлов и сплавов.

Известен способ определения силы Р резания по эмпирическому уравнению типа Р=СрtxsvvnKм, сформированному на основе многократного взвешивания силы Р при последовательном варьировании расширенного диапазона основных параметров резания. (См., например, книгу «Технология конструкционных материалов» под ред. A.M. Дальского, изд. 2-е. - М.: Машиностроение. 1985. Стр. 263-265). Все выполняемые действия сводятся к тому, что назначают параметры резания t (глубина резания), s (подача инструмента), v (скорость резания) и другие условия резания, последовательно ведут пробные резы, каждый раз варьируя величины всех параметров, и для каждого варианта взвешивают силу Р резания. Этим накапливают базу экспериментальных данных, достаточных для построения экспериментальных графиков, подбирают для этих графиков математические зависимости, на основе которых графоаналитически находят как безразмерные числовые величины коэффициентов Ср, характеризующих механическую прочность обрабатываемого материала, так и безразмерные величины х, y, n - показатели степени параметров резания t, s, v и Kм соответственно. Здесь коэффициентом Kм учитывают влияние других параметров резания (материал резца, его стойкость, его геометрические размеры, непосредственно связанные со стружко-образованием).

Основные недостатки этого способа определения силы Р резания:

а) очень большая трудоемкость экспериментальных работ и последующего графико-аналитического анализа результатов эксперимента по формированию расчетного уравнения силы Р; в свою очередь, для последующего вычисления силы Р выбор таблично представленных коэффициентов и показателей степени также оказывается очень трудоемким;

б) получаемое расчетное уравнение не имеет физического смысла и, соответственно, исключена возможность оценивать и степень точности находимой величины силы Р, и выбирать ее оптимальную величину.

Наиболее близким прототипом заявленному способу является способ определения силы Р резания на основе последеформационной характеристики в виде коэффициента К усадки стружки. Этот коэффициент представляет собой отношение К=lo/lk. Здесь lo - исходная длина срезаемого припуска, переходящего в стружку при обработке; lk - конечная длина стружки, получаемой из этого припуска. (См., например, книгу «Резание материалов» / И.А. Чечета, В.И. Гунин, О.Н. Кириллов. - Воронеж: ГОУВПО «Воронежский государственный технический университет», 2007.- С.75÷79).

Практическая значимость коэффициента К усадки стружки в том, что он является следствием совокупного действия всех параметров, составляющих режим резания (t, s, v, физико-механические свойства обрабатываемого материала, внешнее и внутреннее трение в процессе резания, материал режущего инструмента, геометрические размеры режущих элементов резца и их взаимное расположение, нагрев от трения, влияние смазывающе-охлаждающей жидкости и другие параметры, влияющие на процесс стружкообразования). В свою очередь, принимают во внимание тот факт, что натуральный логарифм отношения lo/lk представляет собой величину ε - истинную относительную деформацию: ε=ln(lo/lk), и этим предопределяют функциональную зависимость между величинами К и ε: ε=lnK. В свою очередь, коэффициент К по известному соотношению И.А. Тиме составляет: К=cos(θ-γ)/sinθ, где γ - угол наклона передней грани резца, θ - угол наклона плоскости сдвига стружки.

Затем раскладывают вектор силы Р резания на два составляющих вектора: сила Ри, расходующая свою работу на искривление стружки, и сила Рсж, обеспечивающая усадку стружки методом осевого сжатия. В качестве главного составляющего вектора берут Рсж=σ F=σ t s К, где F - площадь поперечного сечения стружки, σ - возникающее в материале напряжение.

Вектор силы Рсж сжатия направлен перпендикулярно к плоскости сдвига, являющейся опорной поверхностью очага пластического деформирования стружки. В свою очередь, плоскость сдвига имеет угол θ наклона к горизонтали, вдоль которой действует суммарный вектор силы Р резания.

Тогда сила резания Р=Рсж/sinθ=σ t s К/sinθ.

Основной недостаток изложенного наиболее близкого способа-прототипа в том, что коэффициент К заранее (до получения стружки) остается неизвестной величиной и этим затруднен мотивированный выбор величины К даже для первичного прикидочного расчета силы резания.

Цель изобретения - создать обоснованный и приемлемый для практики предварительный выбор коэффициента К усадки стружки и этим обеспечить точность определения силы Р резания.

Эта намеченная цель становится достижимой в случае замены стандартной кривой упрочнения, имеющей координаты «напряжение σ - относительная деформация δ», кривой упрочнения с координатами «напряжение σ - истинная относительная деформация ε». Для такой замены принято к сведению:

1) δ=Δl/lo, где Δl - абсолютная деформация изменяющегося начального размера lo;

2) связь между величинами ε и δ: ε=ln(1+δ);

3) в отличие от δ величина ε непосредственно связана с коэффициентом К усадки стружки (ε=lnK, то есть К=еε). Здесь е - основание натурального логарифма; в свою очередь, в отличие от δ величина ε более приемлема, так как обладает свойством аддитивности.

Тогда способ определения силы резания, основанный на последеформационных показателях, осуществляют в два этапа.

Этап первый. Материал, предназначенный для обработки резанием, стандартными испытаниями проверяют на прочность: получают стандартную кривую упрочнения в координатах «напряжение σ - относительная деформация δ» и перестраивают ее в координатах «напряжение (σ) - истинная относительная деформация (ε)». Так как в процессе резания к моменту нарушения сплошности в материале всегда возникает напряжение, имеющее величину, близкую к пределу σв прочности, то по полученной перестроенной кривой упрочнения находят величину предела прочности σв и соответствующую ему степень деформации εв, которой предопределяют максимальную величину коэффициента К усадки стружки посредством зависимости lnK=εв, то есть К=еε. Здесь е - основание натурального логарифма. Назначают глубину t резания и подачу s. Тогда наибольшую силу Р резания вычисляют по уравнению:

Р=σв t s К/sin θ, причем величину угла θ находят по соотношению:

К=cos(θ-γ)/sin θ, где γ - угол наклона передней грани резца.

Этап второй. Для проверки полученной величины Р ведут пробное резание, измеряют геометрические размеры, непосредственно связанные с усадкой стружки (начальную lo срезаемого припуска и конечную длину lk получаемой из него стружки), достаточные для вычисления фактической величины коэффициента К=lo/lk усадки стружки, и по исходному расчетному уравнению Р=σв t s К/sin θ уточняют величину затраченной силы Р резания с учетом экспериментально найденного значения К=lo/lk и по нему вычисленного угла θ, поскольку также К=cos(θ-γ)/sinθ. В свою очередь, допускают возможность некоторого увеличения предела прочности σв для материалов, у которых наблюдается эффект местного его повышения (до 10%) в диапазоне температур синеломкости, и учитывают это повышение.

Положительным эффектом созданного изобретения, касающегося определения силы резания, является повышение точности расчета и существенный рост производительности за счет сокращения технико-экономических затрат на его реализацию.

Источник поступления информации: Роспатент

Показаны записи 241-241 из 241.
05.12.2018
№218.016.a385

Привод линейного перемещения

Изобретение относится к электротехнике, к электродинамическим элементам, предназначенным для преобразования электрической энергии в механическую, и может быть использовано в робототехнике, преимущественно в исполнительных системах манипулятора. Технический результат состоит в повышении усилия и...
Тип: Изобретение
Номер охранного документа: 0002673880
Дата охранного документа: 03.12.2018
Показаны записи 251-260 из 285.
12.01.2017
№217.015.62f8

Способ обработки рабочих поверхностей деталей лопастных машин

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного покрытия на рабочие...
Тип: Изобретение
Номер охранного документа: 0002588973
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.63ac

Алиасный аналого-цифровой преобразователь

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для преобразования аналоговых электрических сигналов в цифровой код. Техническим результатом является повышение точности преобразования. Устройство содержит блок слежения-хранения, генераторы,...
Тип: Изобретение
Номер охранного документа: 0002589388
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66c6

Привод линейного перемещения

Изобретение относится к электротехнике, к электродинамическим элементам, предназначенным для преобразования электрической энергии в механическую, и может быть использовано в робототехнике, преимущественно в исполнительных системах манипулятора. Технический результат состоит в повышении усилия и...
Тип: Изобретение
Номер охранного документа: 0002592070
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6926

Гидравлическая система скрепера

Изобретение относится к землеройно-транспортному машиностроению, а именно к гидроприводам рабочих органов скреперов. Гидравлическая система скрепера включает насос, бак, фильтр, трехсекционный гидрораспределитель, каждая секция которого соединена с одним из исполнительных гидроцилиндров привода...
Тип: Изобретение
Номер охранного документа: 0002591706
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8b97

Сканер ближнего электрического поля для двухсторонних и многослойных печатных плат

Изобретение относится к измерительной технике, представляет собой устройство для сканирования ближнего электрического или магнитного поля источников электромагнитного излучения и может быть использовано при автоматическом измерении напряженности полей для решения задач обеспечения...
Тип: Изобретение
Номер охранного документа: 0002604113
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9f88

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к области ракетной техники, а именно камерам жидкостных ракетных двигателей (ЖРД), и может быть использовано при создании высокоэкономичных смесительных головок и камер ЖРД для перспективных средств выведения. Смесительная головка камеры жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002606202
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1a6

Способ безабразивной доводки сопрягаемых поверхностей

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств для управления подачи жидких и газовых сред. В способе безабразивной доводки металлических сопрягаемых поверхностей в начале обработки между сопрягаемыми поверхностями, служащими...
Тип: Изобретение
Номер охранного документа: 0002606828
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a213

Теплозащитное нанокомпозитное покрытие и способ его формирования

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Теплозащитное нанокомпозитное покрытие, содержащее оксид циркония, нанесенное на поверхность изделия из...
Тип: Изобретение
Номер охранного документа: 0002606814
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a21b

Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного...
Тип: Изобретение
Номер охранного документа: 0002606826
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a22c

Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую...
Тип: Изобретение
Номер охранного документа: 0002606815
Дата охранного документа: 10.01.2017
+ добавить свой РИД