×
10.01.2015
216.013.18b2

Результат интеллектуальной деятельности: АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение производится по принципу просачивания воздуха через пористый материал с известной пористостью и влажностью. Образец известной длины и объема помещают в устройство, обеспечивающее измерение разности давлений на его входе и выходе и объема воздуха, протекшего через образец в стационарном режиме при давлении, близком к атмосферному. На основе измеренных пористости, влажности, разности давлений между торцами образца и времени протекания через него измеренного объема воздуха рассчитывают удельную поверхность конденсированной фазы, удельную поверхность твердой фазы и потенциал влаги однородных пористых материалов по формулам. При этом измерение входящих в формулу физических величин, таких как объем газа, протекающего через образец, время протекания газа, перепад давлений, производят на одних и тех же образцах пористых материалов. Техническим результатом является повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов. 1 ил., 4 табл.
Основные результаты: Аэродинамический способ определения удельной поверхности конденсированной фазы, удельной поверхности твердой фазы и потенциала влаги пористых материалов, включающий измерения объема воздуха, прошедшего через образец пористого материала с известными пористостью и влажностью, перепада давлений между торцами образца и времени протекания воздуха, отличающийся тем, что учитываются поры, перпендикулярные проходящему через образец потоку газа, причем удельную поверхность конденсированной фазы определяют по формуле: удельную поверхность твердой фазы определяют по формуле: потенциал влаги определяют по формуле: где ΔV - объем газа, протекающего через образец, м;Δt - время протекания газа, с;Δp - перепад давлений, Па;k=0,00735 - коэффициент, м;l - длина образца, м;η - вязкость газа, Па·с.σ - коэффициент поверхностного натяжения воды, Н/м;П - пористость сухого образца, м/м;П - пористость влажного образца, м/м;w - объемная влажность, м/м;Ω - удельная поверхность конденсированной фазы, м/м;Ω - удельная поверхность твердой фазы, м/м;A - постоянная Б.В. Дерягина, Дж;ψ - потенциал влаги, Дж/кг.

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов.

Известен способ определения потенциала влаги, включающий измерения начальной и конечной влажности образца, выдержанного в условиях, обеспечивающих отток влаги при заданном газовом давлении [1], при заданном гидростатическом давлении [2]. К основным недостаткам способа относятся длительность определения и невозможность определения потенциала влаги во всем диапазоне его значений на одном и том же образце.

Известен аэродинамический способ определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов, включающий измерения количества газа, протекающего через образец пористого материала, времени протекания, перепада давления между торцами образца, пористости, абсолютной температуры. Расчетная формула известного способа выведена на основе принципов аэрогидродинамического подобия [3, 4]. Основным недостатком известного способа является использование модели пористых тел, имеющей одну цилиндрическую пору, что в реальном трехмерном случае приводит к снижению точности результатов, поскольку учет перпендикулярных цилиндрических пор, вдоль которых не создан поток газа, приводит к изменениям величины скважности и удельной поверхности.

Цель изобретения - повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов.

Поставленная цель достигается тем, что в известном способе определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов, включающем измерения количества газа в стационарном потоке, протекшего через образец пористого материала, времени протекания, перепада давлений между торцами образца с известной пористостью и влажностью, согласно изобретению используется модель с тремя взаимно перпендикулярными цилиндрическими порами.

В основу способа положена идеализированная модель пористого материала, предполагающая однородное и изотропное сложение его частиц.

Это предположение позволяет утверждать, что для кубического образца объем пор можно интерпретировать тремя взаимно перпендикулярными модельными цилиндрическими порами (фиг.1), длины которых равны длине образца, а пористость - объем пор в единице объема образца - является функцией радиуса цилиндрической поры:

где l - длина образца, м;

r - радиус поры, м;

П - пористость.

В основу способа определения пористости П положено сохранение массы воздуха, содержащегося в порах, при его расширении в сосуд с пониженным давлением того же объема, что и образец:

где pатм - атмосферное давление, Па;

Pразр - устанавливаемое в сосуде разрежение, Па;

Pуст - установившееся в системе давление после подсоединения сосуда с пониженным давлением, Па;

Vобр - объем образца почвы, м3;

Vпор - объем пор в образце почвы, м3.

Создание градиента давления газа на противоположных гранях образца и ограничение остальных граней газонепроницаемой оболочкой приводит к установлению стационарного потока газа через трубку радиуса r. В стационарном случае потери кинетической энергии потока равны работе по преодолению сил трения о поверхность конденсированной фазы.

Рассмотрим цилиндрическую трубку эффективного радиуса R той же длины, что и образец, в которой потери кинетической энергии потока, при том же перепаде давления равны реальным потерям в пористой среде. Использование значений перепада давлений Δp, при которых поток через трубку радиуса R ламинарный, позволяет применить уравнение Пуазейля:

где ΔV - объем газа, протекающего через образец, м3;

Δt - время протекания газа, с;

η - вязкость газа, Па·с.

Две трубки тока подобны, если они подобны геометрически, через них протекает одна и та же сплошная среда, а потоки в них удовлетворяют условиям равенства критериев подобия - чисел Рейнольдса Re, Фруда F, Маха M и Струхаля Sr. Поэтому увеличим длину трубки тока радиуса r до некоторого значения L, при котором эта трубка станет подобной трубке радиуса R и длины l. Уравнение Пуазейля примет вид:

Расходы воздуха ΔV/Δt при заданных перепадах давления Δp в (3) и (4) равны. Определим такую длину L трубки тока радиуса r, протекая через которую поток газа имеет те же потери энергии, что и в образце с пористой средой:

Поверхность контакта конденсированной фазы образца с воздухом равна боковой поверхности трубки тока S=2πrL. Удельной поверхностью конденсированной фазы Ω является отношение поверхности S к объему конденсированной фазы V=l3(1-П):

Поскольку поток воздуха теряет энергию при протекании только по одной из трех трубок, то для определения общей поверхности необходимо утроить полученное значение.

Выражая из соотношения (1) зависимость радиуса r от пористости численно, в виде степенной функции с размерным коэффициентом k=0,00735 м5, для удельной поверхности конденсированной фазы получим:

Пористость П0 сухого образца больше пористости влажного образца П на величину влажности w, то есть П0=П+w, поэтому удельная поверхность твердой фазы равна удельной поверхности конденсированной фазы при нулевой влажности. Поэтому можно записать:

Из выражений (7) и (8) можно определить зависимость Ω(w):

Таким образом, по экспериментально измеренным значениям влажности w, пористости П, перепада давления воздуха на противоположных гранях образца Δp и времени протекания заданного объема воздуха через образец Δt можно рассчитать удельные поверхности влажного и сухого образца.

В пористой среде влага ограничена, с одной стороны, газообразной, а с другой - твердой фазами. Имеется поверхностная энергия взаимодействия с твердой фазой и поверхностная энергия взаимодействия с воздухом:

где E - полная поверхностная энергия; E′ - поверхностная энергия взаимодействия влаги с твердой фазой; E″ - поверхностная энергия взаимодействия влаги с воздухом.

Потенциал влаги пористых материалов определяется как энергия, необходимая для переноса единицы массы жидкости из образца в свободную жидкость ψ=E/m, с учетом (10) имеем:

Значение потенциала, обусловленного взаимодействием влаги с твердой фазой, может быть найдено по формуле:

где ρ - плотность воды, кг/м3. Ω0 - объемная удельная поверхность, м23; w - объемная влажность, м33; A - постоянная, Дж; П0 - пористость сухого образца, м33.

Потенциал ψ″ обусловлен взаимодействием влаги с газом и определяется выражением:

где Ωcf - объемная удельная поверхность границы раздела вода - воздух, м23; σlg - удельная свободная поверхностная энергия на границе раздела вода - воздух, Дж/м2.

Расчетная формула для потенциала влаги учетом (12) и (13) имеет вид:

где Ω0 - удельная поверхность твердой фазы, м23;

П0- пористость сухого образца, м33;

w - объемная влажность образца, м33;

ρ - плотность воды, кг/м3;

σ - коэффициент поверхностного натяжения воды, Н/м;

A - постоянная Б.В. Дерягина, равная (5·10-21-5·10-22), Дж.

ψ - потенциал влаги, Дж/кг.

Экспериментально измеряют значения влажности термостатно-весовым методом, пористости методом расширения порового газа в область с пониженным давлением. Измерив перепад давления воздуха на противоположных гранях образца и время протекания заданного объема воздуха через образец, рассчитывают удельные поверхности влажного и сухого образца по формулам (8) и (9). По формуле (14) рассчитывают потенциал влаги.

Результаты реализации способа приведены в сводных таблицах 1-4, в которые для сравнения с известными способами добавлены экспериментальные данные, полученные центрифугированием [2]. Для сохранения общепринятых размерностей удельной поверхности твердой фазы (м2/г) в таблицах значения поделены на плотность твердой фазы, а потенциал влаги представлен в виде десятичного логарифма от абсолютной величины давления (pF).

Преимущество предложенного способа заключается в уточнении определения потенциала влаги, удельных поверхностей твердой и конденсированной фаз. Все это позволяет сравнивать предложенным способом пористые материалы, например почвы, по их гидрофизическим свойствам на основе объективных характеристик.

Источники информации

1. Глобус A.M. Экспериментальная гидрофизика почв. Л.: Гидрометеоиздат, 1969 г., с.158-178.

2. Смагин А.В. Колоночно-центрифужный метод определения основной гидрофизической характеристики почв и дисперсных грунтов // Почвоведение. 2012, №4, с.470-478.

3. Сироткин В.В., Сироткин В.М. Прикладная гидрофизика почв. - Чебоксары, 2001, 252 с.

4. Патент РФ №2230308, C27C 15/08 Аэродинамический способ определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов и устройство для его реализации. В.В. Сироткин, В.М. Сироткин, опубл. 10.06.2004, Бюл. №16.

Аэродинамический способ определения удельной поверхности конденсированной фазы, удельной поверхности твердой фазы и потенциала влаги пористых материалов, включающий измерения объема воздуха, прошедшего через образец пористого материала с известными пористостью и влажностью, перепада давлений между торцами образца и времени протекания воздуха, отличающийся тем, что учитываются поры, перпендикулярные проходящему через образец потоку газа, причем удельную поверхность конденсированной фазы определяют по формуле: удельную поверхность твердой фазы определяют по формуле: потенциал влаги определяют по формуле: где ΔV - объем газа, протекающего через образец, м;Δt - время протекания газа, с;Δp - перепад давлений, Па;k=0,00735 - коэффициент, м;l - длина образца, м;η - вязкость газа, Па·с.σ - коэффициент поверхностного натяжения воды, Н/м;П - пористость сухого образца, м/м;П - пористость влажного образца, м/м;w - объемная влажность, м/м;Ω - удельная поверхность конденсированной фазы, м/м;Ω - удельная поверхность твердой фазы, м/м;A - постоянная Б.В. Дерягина, Дж;ψ - потенциал влаги, Дж/кг.
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 31-34 из 34.
13.01.2017
№217.015.7903

Способ тушения пожара в наземных резервуарах

Изобретение относится к области тушения пожаров в наземных резервуарах, заполненных горючими жидкостями. Под наземным резервуаром для хранения пожароопасной жидкости ниже по уровню под землей соосно устанавливается пустой резервуар с объемом, превышающим объем наземного резервуара. Причем...
Тип: Изобретение
Номер охранного документа: 0002599363
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7e7c

Способ получения средства для обработки вымени коров

Заявленное изобретение относится к области ветеринарии и предназначено для обработки вымени коров. В 500 мл дистиллированной воды растворяют 2,5-10,0 г дигидрата [диакво{1-оксиэтан-1,1-дифосфонат(1-)}] меди(II), 10-20 г полимера Fomblin HC/R, 50-70 г глицерина, 50-70 г вазелинового масла,...
Тип: Изобретение
Номер охранного документа: 0002601119
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.907f

Ручное орудие для обработки почвы

Изобретение относится к сельскому хозяйству и может быть использовано в приусадебном хозяйстве, на дачном участке, в летних школьных и трудовых лагерях. Ручное орудие для обработки почвы содержит рукоятку с патроном 2, поперечину 3 в виде дуг и зубья 4 в виде спирали, концы которой соединены с...
Тип: Изобретение
Номер охранного документа: 0002603921
Дата охранного документа: 10.12.2016
20.02.2019
№219.016.c16b

Способ получения кремния

Изобретение может быть использовано в химической промышленности. Тетрафторид кремния и фторид натрия выделяют термической диссоциацией кремнефторида натрия при температуре выше 923 К, затем восстанавливают кремний из тетрафторида кремния при контакте с натрием. Выделение и восстановление...
Тип: Изобретение
Номер охранного документа: 0002415809
Дата охранного документа: 10.04.2011
Показаны записи 31-40 из 55.
20.08.2015
№216.013.71fe

Способ определения среднего уклона элементарной площадки в полевых условиях и профилограф для его осуществления

Изобретение относится к сельскому хозяйству, в частности к устройствам для изучения водной эрозии, и может быть использовано в почвоведении, мелиорации и гидрологии. Техническим результатом изобретения является упрощение способа и повышение точности определения среднего уклона элементарной...
Тип: Изобретение
Номер охранного документа: 0002560752
Дата охранного документа: 20.08.2015
20.09.2015
№216.013.7c2a

Устройство для закрепления заготовок неправильной формы

Устройство содержит обойму внешнюю и эластичную оболочку и снабжено обоймой внутренней и гильзой с радиально расположенными подвижными подпружиненными сменными штифтами, постоянно контактирующими с эластичной оболочкой, образующей с внутренней цилиндрической поверхностью обоймы внутренней,...
Тип: Изобретение
Номер охранного документа: 0002563383
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.8358

Сублиматор с сверхвысокочастотным генератором для сушки замороженной продукции

Изобретение относится к сушильному оборудованию и может быть использовано при сушке замороженных продуктов. Сублиматор представляет собой вертикальную цилиндрическую камеру, разделенную на две части с помощью многослойного перфорированного перекрытия из неферромагнитного материала. Камера...
Тип: Изобретение
Номер охранного документа: 0002565227
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8e64

Способ и устройство для обеззараживания молока комплексным воздействием физических факторов

Изобретение относится к пищевой промышленности, в частности для обеззараживания молока. Способ обеззараживания молока включает воздействие на молоко электрическим полем СВЧ частотой 2450 МГц, удельной мощностью 4 Вт/г в проточном режиме с наложением бактерицидного потока УФ излучений лампой...
Тип: Изобретение
Номер охранного документа: 0002568061
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9158

Снайперский патрон

Изобретение относится к боеприпасам, в частности к снайперским патронам. Снайперский патрон содержит стальную моноблочную пулю, латунную гильзу с капсюлем-воспламенителем и метательный пороховой заряд. Пуля патрона выполнена с соотношением длины к ее диаметру по ведущим пояскам, составляющим...
Тип: Изобретение
Номер охранного документа: 0002568824
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92f6

Способ возделывания кукурузы на зерно в агроклиматических условиях чувашской республики

Изобретение относится к области сельского хозяйства. Способ включает размещение кукурузы после яровой или озимой пшеницы, в том числе и повторный до 3 раз посев кукурузы на поле севооборота. Выбирают сорта и гибриды с наименьшими показателями ФАО в пределах 150-200. Проводят посев...
Тип: Изобретение
Номер охранного документа: 0002569240
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.972f

Способ возделывания топинамбура

Изобретение относится к области сельского хозяйства. В предыдущий год на участке, предназначенном под посадку топинамбура, высевают овес или яровую пшеницу. После созревания зерно убирают методом очеса. Оставшиеся после уборки стебли уходят под зиму и способствуют снегозадержанию. Заранее...
Тип: Изобретение
Номер охранного документа: 0002570323
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9abe

Способ определения скорости коррозии стали в свинцовом теплоносителе

Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С...
Тип: Изобретение
Номер охранного документа: 0002571239
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f01

Способ возделывания сахарной свеклы

Изобретение относится к сельскому хозяйству. Изобретение представляет собой способ возделывания корнеплодов сахарной свеклы на малогумусовых дерново-подзолистых почвах Чувашской Республики и включает: минимальную обработку почвы, основанную на разноглубинном дисковании и лущении предшественника...
Тип: Изобретение
Номер охранного документа: 0002572342
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f51

Способ очистки глухих отверстий

Изобретение относится к области машиностроения, эксплуатации и ремонта автотракторных двигателей и промышленного оборудования, где имеются глухие отверстия с гладкой или резьбовой поверхностью, а также глубокие глухие отверстия с искривленными осями. Предварительно плоскость поверхности...
Тип: Изобретение
Номер охранного документа: 0002572422
Дата охранного документа: 10.01.2016
+ добавить свой РИД