×
10.01.2015
216.013.18b2

Результат интеллектуальной деятельности: АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов. Способ заключается в том, что измерение производится по принципу просачивания воздуха через пористый материал с известной пористостью и влажностью. Образец известной длины и объема помещают в устройство, обеспечивающее измерение разности давлений на его входе и выходе и объема воздуха, протекшего через образец в стационарном режиме при давлении, близком к атмосферному. На основе измеренных пористости, влажности, разности давлений между торцами образца и времени протекания через него измеренного объема воздуха рассчитывают удельную поверхность конденсированной фазы, удельную поверхность твердой фазы и потенциал влаги однородных пористых материалов по формулам. При этом измерение входящих в формулу физических величин, таких как объем газа, протекающего через образец, время протекания газа, перепад давлений, производят на одних и тех же образцах пористых материалов. Техническим результатом является повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов. 1 ил., 4 табл.
Основные результаты: Аэродинамический способ определения удельной поверхности конденсированной фазы, удельной поверхности твердой фазы и потенциала влаги пористых материалов, включающий измерения объема воздуха, прошедшего через образец пористого материала с известными пористостью и влажностью, перепада давлений между торцами образца и времени протекания воздуха, отличающийся тем, что учитываются поры, перпендикулярные проходящему через образец потоку газа, причем удельную поверхность конденсированной фазы определяют по формуле: удельную поверхность твердой фазы определяют по формуле: потенциал влаги определяют по формуле: где ΔV - объем газа, протекающего через образец, м;Δt - время протекания газа, с;Δp - перепад давлений, Па;k=0,00735 - коэффициент, м;l - длина образца, м;η - вязкость газа, Па·с.σ - коэффициент поверхностного натяжения воды, Н/м;П - пористость сухого образца, м/м;П - пористость влажного образца, м/м;w - объемная влажность, м/м;Ω - удельная поверхность конденсированной фазы, м/м;Ω - удельная поверхность твердой фазы, м/м;A - постоянная Б.В. Дерягина, Дж;ψ - потенциал влаги, Дж/кг.

Изобретение относится к контрольно-измерительной технике и может найти применение в почвоведении, мелиорации, гидрологии, грунтоведении, строительном деле и других областях науки и производства, связанных с исследованием свойств пористых материалов.

Известен способ определения потенциала влаги, включающий измерения начальной и конечной влажности образца, выдержанного в условиях, обеспечивающих отток влаги при заданном газовом давлении [1], при заданном гидростатическом давлении [2]. К основным недостаткам способа относятся длительность определения и невозможность определения потенциала влаги во всем диапазоне его значений на одном и том же образце.

Известен аэродинамический способ определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов, включающий измерения количества газа, протекающего через образец пористого материала, времени протекания, перепада давления между торцами образца, пористости, абсолютной температуры. Расчетная формула известного способа выведена на основе принципов аэрогидродинамического подобия [3, 4]. Основным недостатком известного способа является использование модели пористых тел, имеющей одну цилиндрическую пору, что в реальном трехмерном случае приводит к снижению точности результатов, поскольку учет перпендикулярных цилиндрических пор, вдоль которых не создан поток газа, приводит к изменениям величины скважности и удельной поверхности.

Цель изобретения - повышение точности определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, потенциала влаги однородных пористых материалов.

Поставленная цель достигается тем, что в известном способе определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов, включающем измерения количества газа в стационарном потоке, протекшего через образец пористого материала, времени протекания, перепада давлений между торцами образца с известной пористостью и влажностью, согласно изобретению используется модель с тремя взаимно перпендикулярными цилиндрическими порами.

В основу способа положена идеализированная модель пористого материала, предполагающая однородное и изотропное сложение его частиц.

Это предположение позволяет утверждать, что для кубического образца объем пор можно интерпретировать тремя взаимно перпендикулярными модельными цилиндрическими порами (фиг.1), длины которых равны длине образца, а пористость - объем пор в единице объема образца - является функцией радиуса цилиндрической поры:

где l - длина образца, м;

r - радиус поры, м;

П - пористость.

В основу способа определения пористости П положено сохранение массы воздуха, содержащегося в порах, при его расширении в сосуд с пониженным давлением того же объема, что и образец:

где pатм - атмосферное давление, Па;

Pразр - устанавливаемое в сосуде разрежение, Па;

Pуст - установившееся в системе давление после подсоединения сосуда с пониженным давлением, Па;

Vобр - объем образца почвы, м3;

Vпор - объем пор в образце почвы, м3.

Создание градиента давления газа на противоположных гранях образца и ограничение остальных граней газонепроницаемой оболочкой приводит к установлению стационарного потока газа через трубку радиуса r. В стационарном случае потери кинетической энергии потока равны работе по преодолению сил трения о поверхность конденсированной фазы.

Рассмотрим цилиндрическую трубку эффективного радиуса R той же длины, что и образец, в которой потери кинетической энергии потока, при том же перепаде давления равны реальным потерям в пористой среде. Использование значений перепада давлений Δp, при которых поток через трубку радиуса R ламинарный, позволяет применить уравнение Пуазейля:

где ΔV - объем газа, протекающего через образец, м3;

Δt - время протекания газа, с;

η - вязкость газа, Па·с.

Две трубки тока подобны, если они подобны геометрически, через них протекает одна и та же сплошная среда, а потоки в них удовлетворяют условиям равенства критериев подобия - чисел Рейнольдса Re, Фруда F, Маха M и Струхаля Sr. Поэтому увеличим длину трубки тока радиуса r до некоторого значения L, при котором эта трубка станет подобной трубке радиуса R и длины l. Уравнение Пуазейля примет вид:

Расходы воздуха ΔV/Δt при заданных перепадах давления Δp в (3) и (4) равны. Определим такую длину L трубки тока радиуса r, протекая через которую поток газа имеет те же потери энергии, что и в образце с пористой средой:

Поверхность контакта конденсированной фазы образца с воздухом равна боковой поверхности трубки тока S=2πrL. Удельной поверхностью конденсированной фазы Ω является отношение поверхности S к объему конденсированной фазы V=l3(1-П):

Поскольку поток воздуха теряет энергию при протекании только по одной из трех трубок, то для определения общей поверхности необходимо утроить полученное значение.

Выражая из соотношения (1) зависимость радиуса r от пористости численно, в виде степенной функции с размерным коэффициентом k=0,00735 м5, для удельной поверхности конденсированной фазы получим:

Пористость П0 сухого образца больше пористости влажного образца П на величину влажности w, то есть П0=П+w, поэтому удельная поверхность твердой фазы равна удельной поверхности конденсированной фазы при нулевой влажности. Поэтому можно записать:

Из выражений (7) и (8) можно определить зависимость Ω(w):

Таким образом, по экспериментально измеренным значениям влажности w, пористости П, перепада давления воздуха на противоположных гранях образца Δp и времени протекания заданного объема воздуха через образец Δt можно рассчитать удельные поверхности влажного и сухого образца.

В пористой среде влага ограничена, с одной стороны, газообразной, а с другой - твердой фазами. Имеется поверхностная энергия взаимодействия с твердой фазой и поверхностная энергия взаимодействия с воздухом:

где E - полная поверхностная энергия; E′ - поверхностная энергия взаимодействия влаги с твердой фазой; E″ - поверхностная энергия взаимодействия влаги с воздухом.

Потенциал влаги пористых материалов определяется как энергия, необходимая для переноса единицы массы жидкости из образца в свободную жидкость ψ=E/m, с учетом (10) имеем:

Значение потенциала, обусловленного взаимодействием влаги с твердой фазой, может быть найдено по формуле:

где ρ - плотность воды, кг/м3. Ω0 - объемная удельная поверхность, м23; w - объемная влажность, м33; A - постоянная, Дж; П0 - пористость сухого образца, м33.

Потенциал ψ″ обусловлен взаимодействием влаги с газом и определяется выражением:

где Ωcf - объемная удельная поверхность границы раздела вода - воздух, м23; σlg - удельная свободная поверхностная энергия на границе раздела вода - воздух, Дж/м2.

Расчетная формула для потенциала влаги учетом (12) и (13) имеет вид:

где Ω0 - удельная поверхность твердой фазы, м23;

П0- пористость сухого образца, м33;

w - объемная влажность образца, м33;

ρ - плотность воды, кг/м3;

σ - коэффициент поверхностного натяжения воды, Н/м;

A - постоянная Б.В. Дерягина, равная (5·10-21-5·10-22), Дж.

ψ - потенциал влаги, Дж/кг.

Экспериментально измеряют значения влажности термостатно-весовым методом, пористости методом расширения порового газа в область с пониженным давлением. Измерив перепад давления воздуха на противоположных гранях образца и время протекания заданного объема воздуха через образец, рассчитывают удельные поверхности влажного и сухого образца по формулам (8) и (9). По формуле (14) рассчитывают потенциал влаги.

Результаты реализации способа приведены в сводных таблицах 1-4, в которые для сравнения с известными способами добавлены экспериментальные данные, полученные центрифугированием [2]. Для сохранения общепринятых размерностей удельной поверхности твердой фазы (м2/г) в таблицах значения поделены на плотность твердой фазы, а потенциал влаги представлен в виде десятичного логарифма от абсолютной величины давления (pF).

Преимущество предложенного способа заключается в уточнении определения потенциала влаги, удельных поверхностей твердой и конденсированной фаз. Все это позволяет сравнивать предложенным способом пористые материалы, например почвы, по их гидрофизическим свойствам на основе объективных характеристик.

Источники информации

1. Глобус A.M. Экспериментальная гидрофизика почв. Л.: Гидрометеоиздат, 1969 г., с.158-178.

2. Смагин А.В. Колоночно-центрифужный метод определения основной гидрофизической характеристики почв и дисперсных грунтов // Почвоведение. 2012, №4, с.470-478.

3. Сироткин В.В., Сироткин В.М. Прикладная гидрофизика почв. - Чебоксары, 2001, 252 с.

4. Патент РФ №2230308, C27C 15/08 Аэродинамический способ определения удельной поверхности твердой фазы, удельной поверхности конденсированной фазы, коэффициента влагопроводности, потенциала влаги для однородных пористых материалов и устройство для его реализации. В.В. Сироткин, В.М. Сироткин, опубл. 10.06.2004, Бюл. №16.

Аэродинамический способ определения удельной поверхности конденсированной фазы, удельной поверхности твердой фазы и потенциала влаги пористых материалов, включающий измерения объема воздуха, прошедшего через образец пористого материала с известными пористостью и влажностью, перепада давлений между торцами образца и времени протекания воздуха, отличающийся тем, что учитываются поры, перпендикулярные проходящему через образец потоку газа, причем удельную поверхность конденсированной фазы определяют по формуле: удельную поверхность твердой фазы определяют по формуле: потенциал влаги определяют по формуле: где ΔV - объем газа, протекающего через образец, м;Δt - время протекания газа, с;Δp - перепад давлений, Па;k=0,00735 - коэффициент, м;l - длина образца, м;η - вязкость газа, Па·с.σ - коэффициент поверхностного натяжения воды, Н/м;П - пористость сухого образца, м/м;П - пористость влажного образца, м/м;w - объемная влажность, м/м;Ω - удельная поверхность конденсированной фазы, м/м;Ω - удельная поверхность твердой фазы, м/м;A - постоянная Б.В. Дерягина, Дж;ψ - потенциал влаги, Дж/кг.
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
АЭРОДИНАМИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОЙ ПОВЕРХНОСТИ КОНДЕНСИРОВАННОЙ ФАЗЫ, УДЕЛЬНОЙ ПОВЕРХНОСТИ ТВЕРДОЙ ФАЗЫ И ПОТЕНЦИАЛА ВЛАГИ ПОРИСТЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 34.
20.10.2015
№216.013.8358

Сублиматор с сверхвысокочастотным генератором для сушки замороженной продукции

Изобретение относится к сушильному оборудованию и может быть использовано при сушке замороженных продуктов. Сублиматор представляет собой вертикальную цилиндрическую камеру, разделенную на две части с помощью многослойного перфорированного перекрытия из неферромагнитного материала. Камера...
Тип: Изобретение
Номер охранного документа: 0002565227
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8e64

Способ и устройство для обеззараживания молока комплексным воздействием физических факторов

Изобретение относится к пищевой промышленности, в частности для обеззараживания молока. Способ обеззараживания молока включает воздействие на молоко электрическим полем СВЧ частотой 2450 МГц, удельной мощностью 4 Вт/г в проточном режиме с наложением бактерицидного потока УФ излучений лампой...
Тип: Изобретение
Номер охранного документа: 0002568061
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9158

Снайперский патрон

Изобретение относится к боеприпасам, в частности к снайперским патронам. Снайперский патрон содержит стальную моноблочную пулю, латунную гильзу с капсюлем-воспламенителем и метательный пороховой заряд. Пуля патрона выполнена с соотношением длины к ее диаметру по ведущим пояскам, составляющим...
Тип: Изобретение
Номер охранного документа: 0002568824
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92f6

Способ возделывания кукурузы на зерно в агроклиматических условиях чувашской республики

Изобретение относится к области сельского хозяйства. Способ включает размещение кукурузы после яровой или озимой пшеницы, в том числе и повторный до 3 раз посев кукурузы на поле севооборота. Выбирают сорта и гибриды с наименьшими показателями ФАО в пределах 150-200. Проводят посев...
Тип: Изобретение
Номер охранного документа: 0002569240
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.972f

Способ возделывания топинамбура

Изобретение относится к области сельского хозяйства. В предыдущий год на участке, предназначенном под посадку топинамбура, высевают овес или яровую пшеницу. После созревания зерно убирают методом очеса. Оставшиеся после уборки стебли уходят под зиму и способствуют снегозадержанию. Заранее...
Тип: Изобретение
Номер охранного документа: 0002570323
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9abe

Способ определения скорости коррозии стали в свинцовом теплоносителе

Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С...
Тип: Изобретение
Номер охранного документа: 0002571239
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f01

Способ возделывания сахарной свеклы

Изобретение относится к сельскому хозяйству. Изобретение представляет собой способ возделывания корнеплодов сахарной свеклы на малогумусовых дерново-подзолистых почвах Чувашской Республики и включает: минимальную обработку почвы, основанную на разноглубинном дисковании и лущении предшественника...
Тип: Изобретение
Номер охранного документа: 0002572342
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f51

Способ очистки глухих отверстий

Изобретение относится к области машиностроения, эксплуатации и ремонта автотракторных двигателей и промышленного оборудования, где имеются глухие отверстия с гладкой или резьбовой поверхностью, а также глубокие глухие отверстия с искривленными осями. Предварительно плоскость поверхности...
Тип: Изобретение
Номер охранного документа: 0002572422
Дата охранного документа: 10.01.2016
10.05.2016
№216.015.3bee

Ручное орудие для обработки почвы

Ручное орудие для обработки почвы относится к сельскому хозяйству и может быть использовано в приусадебном хозяйстве, на дачном участке и везде, где необходимо проводить глубинную обработку почвы. Ручное орудие содержит зубья, расположенные на поперечине, патрон и черенок. Для глубинной...
Тип: Изобретение
Номер охранного документа: 0002583072
Дата охранного документа: 10.05.2016
10.08.2016
№216.015.54da

Способ повышения эффективности лечения коров, больных острым гнойно-катаральным эндометритом

Изобретение относится к области ветеринарии и касается лечения острого гнойно-катарального эндометрита у коров. Способ включает проведение иглопунктуры по 11 БАТ: №17, 18, 22, 30, 31, 32, 33, 34, 29, 50, 51. Время воздействия составляет 15 минут. Процедуры проводят с интервалом 48 часов,...
Тип: Изобретение
Номер охранного документа: 0002593354
Дата охранного документа: 10.08.2016
Показаны записи 21-30 из 55.
27.10.2014
№216.013.02ae

Устройство для обкатки топливовпрыскивающего насоса

Изобретение относится к двигателестроению, в частности к устройствам для обкатки и испытания топливных насосов высокого давления дизелей. Устройство для обкатки топливного насоса высокого давления (7), соединенного топливопроводами (8) с форсунками (9), содержащее топливный бак (11) с фильтром...
Тип: Изобретение
Номер охранного документа: 0002532084
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.17e8

Установка для посола и термообработки мясного сырья

Предлагаемое изобретение относится к пищевой промышленности, в частности для массирования мясного сырья и термообработки при производстве копченых изделий. Установка характеризуется тем, что горизонтально расположенный цилиндрический экранный корпус содержит сливной патрубок, загрузочный люк, а...
Тип: Изобретение
Номер охранного документа: 0002537548
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17ec

Установка для термообработки крови сельскохозяйственных животных

Изобретение относится к мясной промышленности и может быть использовано при переработке скота, а именно его крови. Установка содержит на монтажном столе с блоком пускозащитной аппаратуры цилиндрический экранирующий корпус. Внутри корпуса коаксиально расположен ротор, выполненный в виде колеса,...
Тип: Изобретение
Номер охранного документа: 0002537552
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a08

Указатель плотности электролита аккумуляторной батареи

Изобретение относится к аккумуляторным батареям, непосредственно преобразующим химическую энергию в электрическую энергию. Технический результат заключается в упрощении оперативного контроля и повышении точности определения плотности электролита, это с одной стороны, с другой, указатель...
Тип: Изобретение
Номер охранного документа: 0002538092
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.27c1

Способ термообработки крови сельскохозяйственных животных

Изобретение относится к мясоперерабатывающей отрасли и может быть использовано в кормопроизводстве. Термообработку крови сельскохозяйственных животных осуществляют путем воздействия электромагнитных излучений сверхвысокочастотного и инфракрасного диапазонов в передвижных резонаторных камерах...
Тип: Изобретение
Номер охранного документа: 0002541634
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.27fd

Установка для термообработки жиросодержащего сырья

Изобретение относится к пищевой промышленности и сельскому хозяйству. Установка для термообработки жиросодержащего сырья содержит загрузочную емкость и экранирующий корпус. Внутри экранирующего корпуса находится объемный резонатор с горизонтально расположенным перемешивающим механизмом из...
Тип: Изобретение
Номер охранного документа: 0002541694
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2852

Установка для обеззараживания жидкостей комплексным воздействием физических факторов

Изобретение относится к пищевой промышленности, в частности к обеззараживанию жидкостей (воды, молока и т.д.). Установка содержит рабочую емкость с входным и выходным патрубками, выполненную в виде цилиндрического экранного корпуса, внутри которого коаксиально установлены перфорированная...
Тип: Изобретение
Номер охранного документа: 0002541779
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3039

Устройство для профилирования поверхности почвы и определения направления стока атмосферных осадков в полевых условиях

Изобретение относится к области сельскохозяйственного машиностроения, в частности к устройствам для изучения водной эрозии, и может быть использовано в почвоведении, мелиорации и гидрологии. Устройство для измерения профиля поверхности почвы и определения направления стока атмосферных осадков в...
Тип: Изобретение
Номер охранного документа: 0002543813
Дата охранного документа: 10.03.2015
20.04.2015
№216.013.4269

Машина для маркировки на дне цельнотянутых или сборных с донышком металлических корпусов консервных банок

Машина содержит станину 1, горизонтальную 20 и наклонную 21 направляющие с шириной, допускающей перемещение маркируемых корпусов банок 18, маркировочное 2 устройство с клиноременным 12 приводом, расположенное под углом α к горизонтали и перпендикулярно дну фиксирующего 3 корпус банки...
Тип: Изобретение
Номер охранного документа: 0002548499
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.49e4

Установка для обработки кишок убойных животных

Установка содержит расположенный под углом к горизонтальной плоскости тороидальный экранирующий корпус с дверцей, загрузочными и сливным патрубками. В корпусе находятся сферические объемные резонаторы, выполненные из двух частей. Верхние части резонаторов жестко закреплены под излучателями...
Тип: Изобретение
Номер охранного документа: 0002550423
Дата охранного документа: 10.05.2015
+ добавить свой РИД