×
10.01.2015
216.013.1832

Результат интеллектуальной деятельности: СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих, взятых в следующем соотношении, мас.%: металлическая - 10-30, оксидная - остальное. Оксидная составляющая включает смесь двух или более микроразмерных порошков оксидов, выбранных из ряда: оксид никеля, оксид железа, оксид меди, оксид хрома. Металлическая составляющая включает микроразмерные порошки меди или сплава на основе меди, а также содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм. Изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850 °C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава. 4 ил., 2 табл., 1 пр.
Основные результаты: Состав шихты для изготовления оксидно-металлического инертного анода, включающий оксидную составляющую из смеси двух и более микроразмерных порошков оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую составляющую, включающую микроразмерные порошки меди или сплава на основе меди, отличающийся тем, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм при соотношении оксидной и металлической составляющих, мас.%:

Изобретение относится к цветной металлургии и может быть использовано для изготовления композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности алюминия из оксидно-фторидных расплавов при пониженных температурах.

Известен состав шихты для изготовления оксидно-металлического инертного анода для электролитического получения алюминия (патент CN 101255569, опубл. 03.09.2008 г.) [1]. Шихта содержит порошки оксида железа, никеля, металлической меди при следующем соотношении компонентов, мас.%:

оксид железа 35-36
оксид никеля 47-50 (в т.ч. наноразмерная фракция 4-14 мас.%)
металлическая медь 14,8-15,1

Изготовленный из шихты известного состава инертный анод при температуре 1000°C обладает высокой удельной электропроводностью - свыше 100 См/см, хорошо подвергается механической обработке, формованию и может быть использован при промышленном электролитическом получении алюминия. Однако при понижении температуры электролиза до 800-900°C происходит снижение его электропроводности до 20-40 См/см, приводящее к быстрой коррозии анода. Это затрудняет либо исключает длительное использование известного инертного анода при этих температурах.

Известна шихта для изготовления оксидно-металлического инертного кислородвыделяющего анода для электролитического получении алюминия (патент RU 2106431, опубл. 10.03.1998 г.) [2]. Шихта содержит металлическую и оксидную составляющие, в мас.%: NiO-NiFe2O4 - 73-83; CuO - 10-20; порошок меди 2-12; углеродный полимер - 1-2.

При изготовлении анода из известной шихты в нем образуется металлическая фаза, содержащая 15-20 мас.% меди. Такой оксидно-металлический анод при температуре выше 950°C характеризуется высокой удельной электропроводностью - 70-400 См/см, и низкими коррозионными токами в оксидно-фторидном расплаве при термодинамическом потенциале выделения кислорода от 5-10 до 70-80 мА/см2. Однако такие важные технологические параметры инертного анода, как удельная электропроводность и плотность тока коррозии, являются невоспроизводимыми. Это указывает на неравномерное распределение оксидной и металлической фаз в оксидно-металлическом аноде, что отрицательно сказывается на его коррозионной стойкости и чистоте получаемого алюминия.

Наиболее близкой к заявляемому изобретению является шихта для изготовления оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности алюминия (патент RU 2401324, опубл. 10.01.2010 г.) [3]. Шихта содержит 5-30 мас.% металлической составляющей, состоящей из меди, или сплава на основе меди и оксидную составляющую из смеси двух и более оксидов из ряда оксидов никеля, железа, меди, хрома. При этом оксидная составляющая содержит оксиды железа и никеля, а также дополнительно включает 1-80 мас.% оксида меди и/или хрома.

Инертный анод, изготовленный из известной шихты, имеет низкую скорость коррозии, а алюминий, полученный электролизом оксидно-фторидного расплава с использованием этого анода, низкое содержание примесей - 0,156-0,188 мас.%. Однако, как показали исследования, для этого анода характерно неравномерное распределение металлической и оксидной фаз по объему, которое может приводить к локальным выкрашиваниям материала из тела анода, изменению удельной электропроводности и пористости, а также к нестабильной работе анода в условиях длительного электролиза.

Из анализа известных составов шихты [1, 2, 3] следует, что шихта для изготовления оксидно-металлических инертных анодов, как правило, состоит из микроразмерных порошков с размером частиц 10-50 мкм. При этом разница в показателях удельной электропроводности разных участков в объеме анода, а также снижение удельной электропроводности анода при снижении температуры электролиза свидетельствуют о том, что включения меди или сплава на основе меди в объеме анода распределены неравномерно. Это приводит к неравномерному распределению тока по поверхности анодов, появлению очагов катастрофической коррозии, локальным перегревам в условиях высоких токовых нагрузок, быстрому разрушению анода в целом, а также негативно сказывается на чистоте получаемого алюминия.

Задача настоящего изобретения заключается в увеличении ресурса работы оксидно-металлического анода, применяемого для низкотемпературного электролиза алюминия.

Для решения поставленной задачи оксидно-металлический инертный анод изготавливают из шихты, включающей оксидную составляющую из смеси двух и более оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую, состоящую из меди или сплава на основе меди при том, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка металла крупностью до 100 нм, при этом оксидная и металлическая составляющие шихты взяты в следующем соотношении, мас.%: металлическая составляющая 10-30; оксидная составляющая - остальное.

Установлено, что устойчивость структуры и более равномерное распределение компонентов в изготовленном оксидно-металлическом аноде достигается за счет добавки наноразмерного порошка меди или сплава на основе меди в размере от 2 мас.% в состав исходной шихты. По данным микрорентгеноструктурного анализа при добавке в шихту менее 2 мас.% наноразмерного порошка меди или сплава на основе меди эффект улучшения распределения компонентов в изготовленном оксидно-металлическом аноде не наблюдается. При повышении доли указанного наноразмерного порошка в исходной шихте выше 10 мас.% в ходе изготовления анода происходит частичная коагуляция наноразмерных частиц до микроразмерных конгломератов, и влияние дальнейшего увеличения доли наноразмерных частиц металла в шихте на равномерность распределения компонентов в изготавливаемом оксидно-металлическом аноде становится незначительным. В свою очередь устойчивость структуры и более равномерное распределение компонентов в аноде положительно сказывается на стабильности удельной электропроводности инертного анода в ходе длительного электролиза. Указанное соотношение содержания металлической и оксидной составляющих в заявляемой шихте выбрано экспериментальным путем при достижении наибольших значений удельной электропроводности изготавливаемого анода, обеспечении стабильности структуры и наименьшей растворимости его компонентов в оксидно-фторидном расплаве.

Таким образом, новый технический результат, достигаемый заявленным изобретением, заключается в более равномерном распределении металлической и оксидной составляющих в объеме оксидно-металлического анода и обеспечении его высокой удельной электропроводности.

Заявленное изобретение иллюстрируется следующими чертежами. На фиг.1 представлена микрофотография спеченного композита (25,3)NiO-(41,2)Fe2O3-(13,5)Cr2O3-(20)Cu (мас. %), изготовленного из оксидных порошков с добавлением порошка металлической меди, содержащего фракцию не более 100 нм в количестве 3 мас.%. Размер порошков основной и металлической фракции составляет 10 до 45 мкм. Для сравнения на фиг.2 приведена микрофотография композита аналогичного химического состава, полученного из шихты по прототипу [3], содержащей порошок меди размером от 10 до 45 мкм. На фиг.3 представлена микрофотография спеченного композита (25,3)NiO-(41,2)Fe2O3-(13,5) Cr2O3-(18)Cu-(2)Ag (мас.%), изготовленного из оксидных порошков с добавлением порошка сплава меди и серебра, содержащего фракцию не более 100 нм в количестве 5 мас.%. Размер порошков основной и металлической фракций составляет 10 до 45 мкм. Для сравнения на фиг.4 представлена микрофотография аналогичного химического состава, полученного из шихты по прототипу [3], изготовленного из оксидных порошков с добавлением порошка сплава меди и серебра, содержащего фракцию не более 100 нм в количестве 5 мас.%. Размер порошков основной и металлической фракций составляет 10 до 45 мкм. В таблице 1 приведены физические свойства композитов, полученных из шихты по прототипу [3] (номера в таблице 1-5), а также композитов аналогичного химического состава с добавлением наноразмерного порошка металлической меди, а также сплава на основе меди, в соответствии с заявляемой шихтой (номера в таблице 6-10). В таблице 2 представлены результаты исследования коррозионного поведения композитных анодов, изготовленных из известной [3] и заявляемой шихт, при электролизе оксидно-фторидного расплава, мас.%: 12NaF-36,8KF-51,2AlF3, насыщенного Al2O3 (5-7 мас.%), 800°C.

Заявляемая шихта составов 1-3 была получена путем равномерного перемешивания порошка металлической меди с содержанием наноразмерного (не более 100 нм) порошка меди 2, 5 и 10 мас. % (образцы 6-8 таблицы 1 и 2) и порошков оксидов железа, меди, никеля и хрома. Аналогично была получена шихта составов 4 и 5, содержащая металлическую фракцию сплава из смеси металлических порошков меди и никеля, а также меди и серебра с содержанием наноразмерного (не более 100 нм) порошка меди и никеля, а также порошка меди и серебра 5 мас. % (таблицы 1 и 2, образцы 9, 10) и порошков оксидов железа, меди, никеля и хрома.

Из полученной шихты были изготовлены оксидно-металлические композитные аноды в виде брусков размерами 10×10×80 мм ультразвуковым перемешиванием исходных порошков в органическом растворе, включая их седиментацию, фильтрование, сушку, формование, холодное прессование, спекание в атмосфере аргона, охлаждение и механическую обработку.

В ходе спекания методом твердофазного синтеза были получены аноды со структурой, устойчивой при электролизе в интервале температур 750-950°C.

Для сравнительного анализа были использованы оксидно-металлические аноды, изготовленные из известной шихты [3], см. таблицы 1 и 2.

Из фиг. 1, 2, а также из фигур 3, 4 видно, что анод, изготовленный из заявляемой шихты, характеризуется более равномерным распределением металлической и оксидной фаз по объему по сравнению с анодом, изготовленным из шихты состава по прототипу.

Удельную электропроводность оксидно-металлических анодов определяли четырехзондовым методом в атмосфере аргона при 750-950°C. Из таблицы 1 следует, что с понижением температуры электролиза с 950 до 750°C снижение значений удельной электропроводности оксидно-металлических анодов, изготовленных из заявляемой шихты, является существенно меньшим по сравнению с анодами, изготовленными из шихты по прототипу.

Коррозионный ток анодов, изготовленных из известной [3] и заявляемой шихт, определяли из стационарных поляризационных кривых, полученных путем измерения и фиксации анодной плотности тока при пошаговом увеличении анодного перенапряжения в лабораторном электролизере. После этого аноды испытывали при электролизе оксидно-фторидного расплава 72NaF-36,8KF-51,2AlF3, насыщенного Al2O3(5-7 мас. %), 800°C в течение 72 часов в лабораторном электролизере. Анодная плотность тока составляла 0,4 А/см2 (10 А). Алюминий выделялся на катоде из диборида титана и скапливался на дне алундового контейнера. По окончании электролиза расплав и алюминий анализировали на содержание компонентов анода спектрально-эмиссионным методом с высокочастотной индуктивно-связанной плазмой. По количеству примесей в катодном алюминии и электролите были оценены значения скоростей растворения анодов. Из таблицы 2 видно, что скорость растворения оксидно-металлических анодов, изготовленных из заявляемой шихты, ниже скорости растворения инертного анода, изготовленного из известной шихты [3].

Таким образом, благодаря более равномерному распределению металлической и оксидной составляющих в оксидно-металлическом аноде заявляемое изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850°C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава.

Состав шихты для изготовления оксидно-металлического инертного анода, включающий оксидную составляющую из смеси двух и более микроразмерных порошков оксидов из ряда: оксид никеля, железа, меди, хрома, и металлическую составляющую, включающую микроразмерные порошки меди или сплава на основе меди, отличающийся тем, что металлическая составляющая содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм при соотношении оксидной и металлической составляющих, мас.%:
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
СОСТАВ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ОКСИДНО-МЕТАЛЛИЧЕСКОГО ИНЕРТНОГО АНОДА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 109.
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.39a3

Способ регенерации хлоридного электролита при электрохимической переработке отработавшего ядерного топлива

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов,...
Тип: Изобретение
Номер охранного документа: 0002647125
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.4853

Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана

Изобретение может быть использовано при изготовлении электрохимических устройств, таких как твердооксидные топливные элементы, электролизеры. Для синтеза наноразмерного порошкообразного материала на основе скандата лантана смесь решеткообразующих компонентов и допанта нагревают в присутствии...
Тип: Изобретение
Номер охранного документа: 0002651009
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4e52

Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Изобретение относится к составам высокотемпературных герметиков. Описан состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана, содержащий оксид кремния в качестве стеклообразователя и корректирующие добавки, в котором в качестве...
Тип: Изобретение
Номер охранного документа: 0002650977
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.664b

Способ получения лигатур алюминия с цирконием

Изобретение относится к области цветной металлургии и может быть использовано при получении лигатуры Al-Zr электрохимическим способом, пригодной для промышленного производства. В качестве источника циркония используют оксид циркония, который смешивают с солевой смесью, содержащей оксид...
Тип: Изобретение
Номер охранного документа: 0002658556
Дата охранного документа: 21.06.2018
28.06.2018
№218.016.688a

Электрохимический способ получения порошков гексаборидов стронция и бария

Изобретение относится к способу получения порошков гексаборидов стронция и бария, включающему электролиз солевого расплава, содержащего смесь соли получаемого гексаборида с борсодержащим компонентом. При этом электролиз ведут с использованием молибденового катода и графитового анода. Способ...
Тип: Изобретение
Номер охранного документа: 0002658835
Дата охранного документа: 25.06.2018
25.10.2018
№218.016.9599

Способ модификации электродных материалов

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002670427
Дата охранного документа: 23.10.2018
Показаны записи 71-80 из 112.
10.05.2018
№218.016.4c00

Способ электролитического получения алюминия

Изобретение относится к способу получения алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку оксидно-солевой смеси, содержащей криолит, оксид алюминия, фториды алюминия, кальция и магния, а также металлический алюминий, в период запуска электролизера и ведение...
Тип: Изобретение
Номер охранного документа: 0002651929
Дата охранного документа: 24.04.2018
11.06.2018
№218.016.615c

Шихта для восстановительно-сульфидирующей плавки окисленных никелевых руд

Изобретение относится к восстановительно-сульфидирующей плавке окисленных никелевых руд на штейн в шахтных или руднотермических печах. Шихта для восстановительно-сульфидирующей плавки окисленных никелевых руд содержит 10,8-12,9 мас.% известняка, 2,7-3,2 мас.% кокса, 19,4-32,4 мас.% сульфидной...
Тип: Изобретение
Номер охранного документа: 0002657267
Дата охранного документа: 09.06.2018
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.664b

Способ получения лигатур алюминия с цирконием

Изобретение относится к области цветной металлургии и может быть использовано при получении лигатуры Al-Zr электрохимическим способом, пригодной для промышленного производства. В качестве источника циркония используют оксид циркония, который смешивают с солевой смесью, содержащей оксид...
Тип: Изобретение
Номер охранного документа: 0002658556
Дата охранного документа: 21.06.2018
06.07.2018
№218.016.6cc7

Способ соединения трубчатых топливных элементов

Изобретение относится к технологиям сборки конструкции подблоков трубчатых топливных элементов. Способ включает последовательное соединение топливных элементов, содержащих несущую основу из электролита и нанесенные на нее слои электродов, посредством интерконнектора в виде ступенчатого кольца...
Тип: Изобретение
Номер охранного документа: 0002660124
Дата охранного документа: 05.07.2018
18.01.2019
№219.016.b08e

Способ электрохимического получения компактных слоев металлического рения

Изобретение относится к области электрохимического получения компактных слоев элементарного металлического рения из его соединений путем электролиза расплавов. Проводят электролиз ренийсодержащего компонента в расплаве солей, где в качестве ренийсодержащего компонента используют перренат калия....
Тип: Изобретение
Номер охранного документа: 0002677452
Дата охранного документа: 16.01.2019
02.02.2019
№219.016.b65e

Система видеонаблюдения с транспортного средства, находящегося в движении

Система видеонаблюдения с транспортных средств 1, в которой видеонаблюдение осуществляют с нескольких транспортных средств (ТС), двигающихся по заданным траекториям. Каждое ТС оборудовано видеокамерой 2, подключенной через плату видеоввода 3 к компьютеру 4, имеющему первое приемно-передающее...
Тип: Изобретение
Номер охранного документа: 0002678688
Дата охранного документа: 30.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
17.03.2019
№219.016.e2d0

Способ пирометаллургической переработки окисленной никелевой руды

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленной никелевой руды, содержащей цветные металлы и железо, с получением ферроникеля и чугуна. Способ включает предварительный подогрев исходной шихты совместно с флюсующими добавками без...
Тип: Изобретение
Номер охранного документа: 0002682197
Дата охранного документа: 15.03.2019
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
+ добавить свой РИД