×
10.01.2015
216.013.1782

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ

Вид РИД

Изобретение

№ охранного документа
0002537446
Дата охранного документа
10.01.2015
Аннотация: Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах. Техническим результатом является выделение интервалов глубин (пластов), где происходит движение флюидов, и оценка скорости их фильтрации в месте расположения наблюдательной скважины. В остановленной скважине осуществляют измерение температуры и определяют скорость изменения температуры на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. На интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки, скорость изменения температуры в которых существенно выше скорости изменения температуры на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации пластовых флюидов на интервалах глубин, находящихся в пределах продуктивных пластов. 7 з.п. ф-лы, 7 ил.

Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах.

Для оптимизации взаимного расположения и режимов работы добывающих и нагнетательных скважин желательно иметь информацию о направлениях и скоростях течения пластовых флюидов в нефтяных залежах, где пробурены десятки и сотни скважин. Эта информация позволит уточнить гидродинамическую модель нефтяной залежи. Особую важность информация о движении пластовых флюидов имеет в случае добычи высоковязкой нефти. Кроме гетерогенности свойств нефтяного пласта, которая может быть известна из геофизических исследований, в процессе добычи возникает неоднородность фильтрационных свойств пласта, связанная с составом пластового флюида. Между нагнетательными и добывающими скважинами могут возникать каналы, заполненные водой (имеющей низкую вязкость), по которым закачиваемая вода поступает в добывающую скважину и не обеспечивает вытеснения нефти и прогрева нефтесодержащих участков пласта. По этим причинам разработка методов контроля за движением пластовых флюидов в нефтяной залежи с большим количеством добывающих и нагнетательных скважин представляет большой интерес.

В настоящее время контроль за движением пластовых флюидов в нефтяной залежи осуществляют косвенным образом, с помощью мониторинга гидравлической связи между скважинами методом гидропрослушивания (см., например, Amanat U. Chaudhry, Oil Well Testing Handbook, Elsevier Science, 2004, p.429-462). Этот метод основан на наблюдениях изменения давления в простаивающих скважинах при изменении режимов работы возмущающих скважин.

Более прямым методом является трассирование фильтрационных потоков с помощью индикаторных веществ (см., например, G. Michael Shook, Shannon L. Ansley, Allan Wylie, Tracers and Tracer Testing: Design, Implementation, and Interpretation Methods, 2004, INEEL). Метод состоит в добавлении индикаторного вещества в нагнетаемую в скважину жидкость и регистрации момента появления и концентрации индикатора в жидкости, поступающей из добывающих скважин. В качестве индикаторов используют различные химические и радиоактивные вещества, которые должны хорошо растворяться в воде, не выпадать в осадок, не сорбироваться горной породой, регистрироваться в широком диапазоне концентраций и т.д.. Трассирование фильтрационных потоков является достаточно дорогим и трудоемким методом, который применяется относительно редко. Кроме того, трассирование позволяет оценить только среднюю скорость фильтрации флюида между нагнетательной и добывающей скважиной. Скорость фильтрации флюида в месте расположения добывающей скважины (если бы она была остановлена) остается неизвестной.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности выделения интервалов глубин (пластов), где происходит движение флюидов, и оценки скорости их фильтрации в месте расположения наблюдательной скважины.

Указанный технический результат достигается тем, что в соответствии с предлагаемым способом определения скорости фильтрации пластовых флюидов в остановленной скважине осуществляют измерение температуры и определяют скорость изменения температуры на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. На интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки, скорость изменения температуры в которых существенно выше скорости изменения температуры на интервалах глубин, находящихся в непосредственной близости от продуктивных пластов. Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации флюидов на выделенных участках интервалов глубин, находящихся в пределах продуктивных пластов.

В соответствии с одним из вариантов реализации изобретения температуру в остановленной скважине измеряют с помощью оптико-волоконного измерителя.

В соответствии с другим вариантом реализации изобретения температуру в остановленной скважине измеряют посредством по меньшей мере трех термокаротажей этой скважины.

Измерения температуры осуществляют в скважине, остановленной или после цементации, или после добычи, или после нагнетания в скважину флюида, или после циркуляции флюида в скважине.

Предпочтительно выделение участков, на которых скорость изменения температуры существенно выше скорости изменения температуры на интервалах глубин в непосредственной близости от продуктивных пластов, осуществляют при временах выстойки скважины от 10 до 30 ч.

Изобретение поясняется чертежами, где на фиг.1 приведены примеры возмущения теплового поля пласта перед проведением измерений температуры в остановленной скважине, на фиг.2 показано расчетное поле температур в пласте после добычи в течение 30 дней, на фиг.3 - расчетное поле температур в пласте после выстойки скважины в течение 3 дней, на фиг.4 приведены расчетные температуры в скважине, нормированные на первоначальное отклонение температуры скважины от температуры пласта, на фиг.5 - нормированные на скорости изменения температуры для двух скоростей фильтрации, на фиг 6 - зависимость нормированной скорости изменения температуры от скорости фильтрации при времени выстойки скважины 20 ч, на фиг.7 приведена схема расчетной области, которая используется для оценки скорости фильтрации с помощью численного моделирования.

Предлагаемый способ основан на зависимости скорости изменения температуры, измеренной в наблюдательной скважине, от наличия и скорости фильтрации флюидов в пласте, который пересекает скважина.

Данное изобретение осуществляется следующим образом.

Проводят измерения температурного профиля по всему стволу скважины с помощью термокаротажных устройств или с помощью волоконного измерителя температуры в скважине, остановленной после цементации (фиг 1а), добычи (фиг.1б), нагнетания флюида (фиг.1c) или циркуляции флюида (фиг.1d). В случае термокаротажа измерения проводят многократно, не менее 3-5 раз. Во всех случаях начальная температура в скважине и в околоскважинном пространстве отличается от температуры пород вдали (в нескольких метрах) от скважины.

Рассчитывают скорость изменения температуры, измеренной в скважине на различных глубинах: на интервалах глубин, находящихся в пределах продуктивных пластов, и на интервалах глубин, примыкающих к продуктивным пластам (на расстоянии не более нескольких десятков метров).

Предпочтительно, спустя 10-30 ч после остановки скважины на интервалах глубин, находящихся в пределах продуктивных пластов, выделяют участки с фильтрацией пластовых флюидов, где скорость изменения температуры существенно выше, чем вне продуктивных пластов.

Создают численную модель изменения температуры в остановленной скважине, учитывающую влияние фильтрации пластового флюида на скорость изменения температуры в остановленной скважине, сравнивают результаты измерений с результатами численного моделирования и по наилучшему совпадению результатов измерений и результатов моделирования определяют скорость фильтрации флюидов на выделенных участках интервалов глубин, находящихся в пределах продуктивных пластов.

Возможность выделения интервалов глубин и оценки скорости фильтрации пластовых флюидов была продемонстрирована на синтетических случаях с использованием коммерческого симулятора COMSOL Multiphysics 3.5.

Проводилось 2D моделирование стационарного поля давления (и скорости фильтрации) и нестационарного поля температур в горизонтально расположенной однородной расчетной области, включающей скважину.

Уравнения для давления и температуры имеют вид:

,

где скорость фильтрации флюида, , k - проницаемость пласта, µ - вязкость фильтрующегося флюида, λ - теплопроводность флюидонасыщенного пласта, ρmcm - объемная теплоемкость кристаллической матрицы пласта, ρfcf - объемная теплоемкость флюида, ϕ - пористость пласта.

Граничные условия уравнения для расчета давления (фиг.7): непроницаемые верхняя и нижняя границы расчетной области и поверхность скважины, заданные давления P1 и P2 на левой и правой границах расчетной области. При этом разность давлений P1-P2 подбиралась таким образом, чтобы при заданном значении проницаемости пласта обеспечить требуемую скорость фильтрации флюида.

Граничные условия для уравнения энергии (фиг.7): теплоизолированные верхняя и нижняя границы расчетной области, температура T0, равная температуре пласта, на левой границе и условие свободного истекания на правой границе расчетной области.

Расчет проводился в два этапа.

На первом этапе на границах скважины задавалась постоянная температура, которая соответствует температуре флюида, текущего по скважине во время добычи или циркуляции, и рассчитывалось поле температур в конце циркуляции, которое использовалось как начальное условие для второго этапа. На втором этапе рассчитывалась эволюция поля температур после остановки скважины. Расчет проводился во всей расчетной области, включая скважину.

В качестве примера рассмотрим месторождение с двумя продуктивными пластами, причем добыча ведется из нижнего пласта (фиг.1б). Фиг.2 показывает расчетное поле температур в верхнем пласте (на фиксированной глубине) после 30 дней добычи при скорости фильтрации в этом пласта 0,25 м/день.

Расчетное поле температур в пласте после 3 дней выстойки скважины приведено на фиг.3. Скважина на этом рисунке показана черным кружком. Поскольку размер области, где температура существенно отличается от пластовой, существенно превосходит радиус скважины, происходит снос области повышенной температуры фильтрующимся флюидом. Как следствие, температура, измеренная в скважине, изменяется быстрее, чем при отсутствии потока.

Расчетные температуры в скважине, нормированные на первоначальное отклонение температуры скважины от температуры пласта при скоростях фильтрации 0, 0,12 и 0,25 м/день показаны на фиг.4, кривая 1 - V=0, кривая 2 - V=0,12 м/д, кривая 3 - V=0,25 м/д. Фиг.5 показывает скорость изменения температуры при скоростях фильтрации 0,12 и 0,25 м/день, нормированную на скорость изменения температуры при отсутствии фильтрации в пласте (кривая 1 - V=0,25 м/д, кривая 2 - V=0,12 м/д).

Расчеты показывают, что нормированная таким образом скорость релаксации температуры имеет наибольшие значения в интервале времен выстойки скважины 10-30 ч. Фиг.6 дает зависимость этой величины от скорости фильтрации флюида при времени выстойки 20 ч. Конкретный вид нормированной скорости релаксации температуры зависит от конструкции скважины, тепловых свойств горных пород и должен рассчитываться в каждом конкретном случае, например, с помощью коммерческого симулятора COMSOL Multiphysics 3.5.

Тем не менее из фиг.6 видно, что с помощью предлагаемого способа можно получить информацию о фильтрационных потоках, имеющих скорость более 0,03-0,05 м/день.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ ПЛАСТОВЫХ ФЛЮИДОВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 112.
10.04.2016
№216.015.3298

Способ акустического каротажа

Изобретение относится к средствам акустического каротажа в скважине. Техническим результатом является повышение качества получаемых в процессе каротажа акустических данных за счет компенсации вращения прибора акустического каротажа во время проведения измерений в скважине. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002581074
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.68ec

Способ ориентирования трещин гидравлического разрыва в подземном пласте, вскрытом горизонтальными стволами

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей...
Тип: Изобретение
Номер охранного документа: 0002591999
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9d2f

Способ определения расходов фаз двухфазной смеси в трубопроводе

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам. Для определения расходов фаз двухфазной смеси в трубопроводе формируют нестационарный импульсный режим течения многофазной смеси, обеспечивающий на выходе трубопровода пульсирующие выплески...
Тип: Изобретение
Номер охранного документа: 0002610548
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2ba

Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального...
Тип: Изобретение
Номер охранного документа: 0002607265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
Показаны записи 61-70 из 81.
10.04.2016
№216.015.320c

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для неразрушающего анализа образцов пористых материалов. Сущность изобретения заключается в том, что производят начальное насыщение образца пористой среды электропроводящей жидкостью, или совместно электропроводящей жидкостью и неэлектропроводящим флюидом, или только...
Тип: Изобретение
Номер охранного документа: 0002580177
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3218

Способ размещения приемников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возмущения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580206
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3298

Способ акустического каротажа

Изобретение относится к средствам акустического каротажа в скважине. Техническим результатом является повышение качества получаемых в процессе каротажа акустических данных за счет компенсации вращения прибора акустического каротажа во время проведения измерений в скважине. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002581074
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.68ec

Способ ориентирования трещин гидравлического разрыва в подземном пласте, вскрытом горизонтальными стволами

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей...
Тип: Изобретение
Номер охранного документа: 0002591999
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9d2f

Способ определения расходов фаз двухфазной смеси в трубопроводе

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам. Для определения расходов фаз двухфазной смеси в трубопроводе формируют нестационарный импульсный режим течения многофазной смеси, обеспечивающий на выходе трубопровода пульсирующие выплески...
Тип: Изобретение
Номер охранного документа: 0002610548
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2ba

Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального...
Тип: Изобретение
Номер охранного документа: 0002607265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
+ добавить свой РИД