×
27.12.2014
216.013.14f8

АВТОНОМНЫЙ ДЕТЕКТОРНЫЙ МОДУЛЬ КАК СТРОИТЕЛЬНЫЙ БЛОК ДЛЯ МАСШТАБИРУЕМЫХ СИСТЕМ PET И SPECT

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002536792
Дата охранного документа
27.12.2014
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к системам формирования ядерного изображений. При детектировании событий сцинтилляции в системе формирования ядерного изображения процесс обработки установки временной метки и стробирования энергии внедряют в автономные детекторные модули (ADM) (14) для уменьшения объема последующей обработки. Каждый ADM (14) съемно установлен на неподвижно закрепленной детали (13) детектора и содержит массив (66) сцинтилляционных кристаллов и ассоциированный(ые) светоприемник(и) (64), такой(ие) как кремниевый фотоумножитель или тому подобное. Светоприемник(и) (64) соединен(ы) с модулем (62) обработки в или на одном из ADM (14), который выполняет стробирование энергии и установку временной метки. Технический результат - уменьшение объема обработки служебных данных. 6 н. и 13 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Настоящее изобретение находит конкретное применение в системах формирования ядерного изображения, в частности, использующих формирование изображений на основе позитронно-эмиссионной томографии (PET) и/или формирование изображений на основе однофотонной эмиссионной компьютерной томографии (SPECT), но также может найти применение в других системах формирования ядерного изображения и т.п. Однако следует понимать, что описанные технологии также могут найти применение в других системах формирования изображений, других сценариях формирования изображений, других технологиях анализа изображения и т.п.

Детекторы излучения для систем PET и SPECT основаны либо на комбинациях сцинтиллятора/фотодетектора, либо на использовании материалов прямого преобразования. В обоих случаях требуется выполнять существенную обработку при снятии записываемых показаний энергии для получения значения энергии и временной метки события сцинтилляции. Например, множество гамма-лучей подвергаются комптоновскому рассеянию и распределяют свою энергию по множеству элементов детектирования. Отдельные регистрации энергии собирают с помощью электронных средств считывания для формирования получаемого в результате события, и в PET временную метку прикрепляют к так называемому "одиночному" событию (например, кластеризации энергии и установке временной метки). После кластеризации энергии и стробирования энергии событие может быть назначено элементу детектирования в качестве наиболее вероятного первого элемента взаимодействия. В случае детектора SPECT это событие может непосредственно использоваться для реконструкции, тогда как для PET полное соответствие между двумя элементами находят перед использованием пары событий для реконструкции.

В классических сканерах PET и SPECT обработку данных выполняют централизованным способом. Выход комбинации сцинтиллятора/фотодетектора обрабатывают с помощью электронных блоков (например, остеков, в которых размещены электронные средства обработки), выполняющих дискриминацию энергии, кластеризацию события, стробирование энергии, идентификацию пикселя и установку временной метки. В детекторах, в которых используются твердотельные светоприемники или прямые преобразователи, применяют большее количество электронных средств считывания, сконцентрированных близко к детектору, используя специализированные входные электронные преобразователи (например, ASIC, такие как предварительные усилители и аналогово-цифровые преобразователи).

Однако в классических решениях не интегрируется достаточное количество электронных средств в одном детекторном модуле для обеспечения возможности его работы в качестве автономных, масштабируемых строительных блоков всей системы. Обычно это приводит к получению электронных средств считывания, которые подогнаны к точной конфигурации рассматриваемых систем PET или SPECT. Поэтому даже небольшие изменения конфигурации могут оказаться трудными для воплощения без изменения большей части электронных средств считывания. Кроме того, поздняя кластеризация отдельных событий приводит к высоким скоростям передачи данных, которые должны быть обработаны электронными средствами считывания, поскольку стробирование энергии может применяться только до цепи обработки.

В настоящем изобретении предусмотрены новые и улучшенные системы и способы для включения электронных средств обработки в модуль ядерного детектора для обеспечения масштабируемой архитектуры ядерного детектора, которые преодолевают описанные выше и другие проблемы.

В соответствии с одним аспектом система детектора ядерного сканирования включает в себя ядерный сканер, содержащий множество ядерных детекторов, и множество автономных детекторных модулей (ADM), съемно закрепленных на каждом детекторе. Каждый ADM включает в себя массив сцинтилляционных кристаллов, содержащий один или больше сцинтилляционных кристаллов, один или больше светоприемников для детектирования событий сцинтилляции в массиве сцинтилляционных кристаллов и модуль обработки, который устанавливает временную метку для каждого детектируемого события сцинтилляции, выполняет протокол стробирования энергии для различения гамма-лучей, для которых произошло комптоновское рассеяние, и выводит информацию о событии сцинтилляции с временной меткой и после стробирования энергии.

В соответствии с другим аспектом способ уменьшения потребности в последующей обработке данных в системе формирования ядерного изображения включает в себя этапы, на которых: детектируют события сцинтилляции в одном или больше автономных детекторных модулях (ADM), устанавливают временную метку для событий сцинтилляции на уровне модуля в каждом ADM и выполняют технологию стробирования энергии для событий сцинтилляции на уровне модуля; выводят информацию о событии сцинтилляции с временной меткой и после стробирования энергии. Способ дополнительно включает в себя обработку и реконструкцию информации о событии в объеме 3D изображения.

В соответствии с другим аспектом автономный детекторный модуль (ADM) включает в себя массив сцинтилляционных кристаллов, по меньшей мере, один светоприемник, который детектирует событие сцинтилляции во всем или на участке массива сцинтилляционных кристаллов, и модуль обработки, который устанавливает временные метки для детектированных событий сцинтилляции, выполняет технологию стробирования энергии для детектированных событий сцинтилляции и выводит информацию о событии сцинтилляции с временной меткой и после стробирования энергии. По меньшей мере, один светоприемник соединен со всем или с частью массива сцинтилляционных кристаллов на первой стороне и с разъемом на второй стороне. Такой разъем съемно соединяет, по меньшей мере, один светоприемник с печатной платой (PCB), которая соединена с модулем обработки.

Одно преимущество состоит в том, что уменьшается объем последующей обработки служебных данных.

Другое преимущество состоит в масштабируемости архитектуры детектора с использованием заменяемых и взаимозаменяемых детекторных модулей.

Также еще одно преимущество изобретения будет понятно для специалистов в данной области техники после прочтения следующего подробного описания изобретения.

Настоящее изобретение может быть выполнено в форме различных компонентов и компоновок компонентов и с помощью различных этапов и сочетаний этапов. Единственное назначение чертежей представляет собой только иллюстрацию различных аспектов, и их не следует рассматривать как ограничение изобретения.

На фиг. 1 иллюстрируется система формирования ядерного изображения, содержащая ядерный сканер (например, сканер PET или SPECT) с множеством детекторов, каждый из которых включает в себя массив автономных детекторных модулей (ADM), в который встроены все электронные средства, необходимые для генерирования или детектирования одиночных событий сцинтилляции после стробирования энергии.

На фиг. 2 показана иллюстрация ADM и различных его компонентов в соответствии с одним или больше аспектами, описанными здесь.

На фиг. 3 иллюстрируется график, который представляет зависимость детектированных одиночных событий по размеру модуля.

На фиг. 4 иллюстрируется возможная архитектура системы PET, формированию которой способствует использование ADM, в соответствии с одним или больше описанными здесь аспектами.

На фиг. 5 иллюстрируется способ выполнения установки временной метки события сцинтилляции и стробирования энергии на уровне детекторного модуля, а не в ходе последующей обработки детектируемых событий сцинтилляции для снижения требований к последующей обработке данных в соответствии с одним или больше аспектами, описанными здесь.

На фиг. 1 иллюстрируется система 10 формирования ядерного изображения, содержащая ядерный сканер 12 (например, сканер типа PET или SPECT) с множеством механических неподвижно закрепленных деталей (например, головок детектора) 13 детектора, каждая из которых включает в себя массив автономных детекторных модулей (ADM) 14, в который встроены все электронные средства обработки, необходимые для генерирования или детектирования одиночных событий сцинтилляции, после стробирования энергии. ADM способствует получению полномасштабной архитектуры ядерного сканера, которая упрощает конструкцию системы и способствует простому воплощению разных конфигураций сканера. Кроме того, ADM способствует снижению скорости передачи данных в последующих электронных средствах обработки, делая систему особенно применимой для вариантов применения с высоким уровнем подсчета.

Множество неподвижно закрепленных деталей 13 детектора расположено вокруг анализируемой области сканера 12 для формирования изображения субъекта или пациента 16, который расположен на опоре 18 для субъекта. Каждый ADM 14 включает в себя множество выводов или разъемов входа/выхода (I/O), включающих в себя разъем 20 питания для подачи питания в ADM, разъем 22 синхронизатора, который способствует генерированию временной метки, разъем 24 конфигурации, через который выполняют конфигурацию ADM, и выходной разъем 26, через который выводят данные события сцинтилляции. В одном варианте осуществления разъемы I/O соединены в единый разъем или шину. Таким образом, ADM включает в себя полный набор электронных средств обработки для генерирования или детектирования одиночных событий сцинтилляции в корпусе детектора. Это способствует предоставлению автономного модуля, который получает питание от источника питания, включает в себя порт синхронизатора системы и конфигурации и который выводит одиночные события сцинтилляции после стробирования энергии. Таким образом, ADM обеспечивает масштабируемый строительный блок для детекторов 13 PET и SPECT.

При формировании изображений SPECT представление проецируемого изображения определяют по данным излучения, принимаемым в каждой координате на детекторе. При формировании изображений SPECT коллиматор определяет лучи, вдоль которых принимают излучение. При формировании изображений PET выходные сигналы детектора отслеживают на предмет событий совпадения излучения на двух детекторах. По положению и ориентации детекторов и по местоположению, на которое обращен детектор, в котором было принято совпадающее излучение, рассчитывают луч или линию отклика (LOR) между точками детектирования события совпадения. Такой луч определяет линию, вдоль которой возникло событие излучения. В обоих способах PET и SPECT данные излучения из множества угловых ориентаций детекторов сохраняют в запоминающем устройстве 30 данных и реконструируют с помощью процессора 32 реконструкции, получая представление объемного изображения области, представляющей интерес, которое сохраняют в запоминающем устройстве объема изображения.

PET событиям сцинтилляции (например, взаимодействие гамма-лучей с одним или более сцинтилляционными кристаллами), детектируемым ADM 14, назначают временные метки, и для них выполняют стробирование энергии (например, для дискриминации гамма-лучей, которые прошли комптоновское рассеяние в исследуемом субъекте и т.д.) и выводят в компонент 28 детектирования совпадения, который анализирует информацию о событии сцинтилляции с временными метками для идентификации пар события сцинтилляции, которые соответствуют событию общей аннигиляции в субъекте 16 во время ядерного сканирования. В запоминающем устройстве 30 данных сохраняется необработанная информация о событии сцинтилляции, информация о временной метке и/или другие полученные данные ядерного сканирования, а также информация о детектировании совпадения и т.п. Процессор 32 реконструкции реконструирует данные ядерного сканирования в одном или больше ядерных изображений, которые сохраняют в запоминающем устройстве 34 изображения и воспроизводят в интерфейсе 36 пользователя. Интерфейс пользователя включает в себя один или больше процессоров 38 (например, процессоров данных, видеопроцессоров, графических процессоров и т.д.) и запоминающее устройство 40, которые способствуют выводу данных ядерного изображения на дисплей 42 для пользователя, а также приему и/или обработке входных команд пользователя.

Каждый ADM 14 включает в себя массив сцинтилляторов и фотодетекторов (не показан на фиг. 1) вместе с соответствующими схемами для выполнения части обработки информации. В частности, функции стробирования окна энергии и установки временной метки для детектированных событий сцинтилляции выполняют в каждом ADM. Это имеет преимущество над отбраковкой событий, когда гамма-лучи проходят одно или больше комптоновских рассеяний внутри исследуемого объекта. Поскольку такую отбраковку выполняют на уровне модуля, она значительно уменьшает количество событий с временной меткой, которые передают по линиям шины для дальнейшей обработки. Такая особенность существенно уменьшает нагрузку на обработку в последующих компонентах. В частности, последующие компоненты могут быть упорядочены так, чтобы они включали в себя детектирование и реконструкцию совпадений, без необходимости в последующей обработке временной метки и/или стробирования.

В одном варианте осуществления схема обработки ADM включает в себя схему коррекции для комптоновского рассеяния в пределах массива сцинтиллятора. Поскольку материалы сцинтиллятора имеют конечную энергию остановки для гамма-излучения, гамма-лучи иногда передают свою энергию в несколько сцинтилляционных кристаллов. Если модуль слишком мал, существенный участок излучения комптоновского рассеяния может откладываться частично в двух или больше разных модулях и может быть потерян вследствие того, что стробирование энергии осуществляется на уровне модуля. В соответствии с этим размер модуля составляет компромисс между размером модуля и фракцией событий, которые можно позволить себе потерять. Размер зависит от плотности или энергии остановки радиации сцинтилляторов, используемых в нем. Приблизительно 97% излучения комптоновского рассеяния может быть восстановлено в модуле размером 7×7 см2 с лютеций-иттриевым ортосиликатом (LYSO) или лютециевым ортосиликатом (LSO) или его вариантами (например, варианты, легированные церием и т.д.). Менее плотный сцинтиллятор, такой как бромид-лантановый (LaBr), можно использовать в более крупном модуле, таком как модуль размером 10×10 см2. Сцинтиллятор более высокой плотности, такой как сцинтиллятор на основе германата висмута (BGO) может использовать меньший массив элементов, такой как модуль размером 4×4 см2. Обычно чем меньше модуль, тем меньшая мощность обработки необходима для каждого модуля, но тем больше данных может быть потеряно.

В одном варианте осуществления ADM 14 может быть разделен на меньшие эффективные модули, такие как модули размером 2×2 или 4×4. Комбинация сцинтиллятора/детектора может содержать конфигурации Anger-логики, включающей в себя световод или взаимно однозначное соединение между сцинтилляторами и детекторами. В другом варианте осуществления каждый ADM включает в себя компоновки сцинтилляторов и диодов и бортовую схему обработки для измерения глубины взаимодействия. В еще одном варианте осуществления схема в модуле включает в себя флэш-память, которая может хранить таблицы коррекции данных, данные буфера или тому подобное. В еще одном другом варианте осуществления элементы детектора и электронные средства обработки совместно используют две стороны одной и той же PCB.

Использование стандартизированных ADM обеспечивает возможность замены модуля детектора предварительно калиброванным ADM, который устраняет необходимость повторной калибровки сканера. Например, если определяют неисправность ADM (например, на основе плохих или отсутствующих сигналов из ADM или тому подобное), тогда сигналы неисправности передают для предупреждения техника или другого лица о неисправном ADM, который техник затем заменяет новым, предварительно калиброванным ADM. Кроме того, использование стандартизированных ADM способствует построению сканера. Это также способствует развитию модулей с разными размерами сцинтилляторов и детекторов для получения разной чувствительности и пространственного разрешения. Стандартизированный модульный подход обеспечивает возможность использования модулей с разными размерами в одном сканере. Аналогично, модули в сканере могут быть заменены без повторной калибровки для изменения их разрешения.

На фиг. 2 показана иллюстрация ADM 14 и различных их компонентов в соответствии с одним или больше аспектами, описанными здесь. ADM включает в себя модуль 60 обработки (например, один или больше процессоров и ассоциированное запоминающее устройство) на печатной плате (PCB) 62. В модуле 60 обработки хранится одна или больше программируемых пользователем вентильных матриц (FPGA) или тому подобное для установки временных меток и для стробирования детектированных событий сцинтилляции. Кроме того, или в качестве альтернативы, модуль обработки имеет одну или больше специализированных микросхем (ASIC) для установки временной метки и стробирования детектированных событий сцинтилляции. Кроме того, или в качестве альтернативы, схема установки временной метки интегрирована в светоприемник, который выводит цифровые значения для временной метки и энергии гамма-частицы, попавшей в электронное средство обработки.

Множество твердотельных светоприемников 64, таких как матрица или мозаичные структуры кремниевых фотоумножителей (SiPM), лавинных фотодиодов (APD) или тому подобное, соединены с соответствующими участками массива 66 сцинтилляционных кристаллов. На фиг. 2 каждый светоприемник соединен с сектором размером 8×8 из кристаллов, и четыре показанные элемента мозаики комбинируют для формирования массива 66 кристаллов размером 16×16. Каждый светоприемник 64 также соединен с разъемом 68, который соединяет светоприемник 64 с PCB 62 и, таким образом, с модулем 60 обработки, содержащим одну или больше из множества ASIC и/или FPGA. В качестве альтернативы, элементы детектора и электронное средство обработки совместно используют две стороны одной и той же PCB. Сцинтиллятор, обращенный к стороне каждого элемента мозаики, заполнен настолько близко к кромкам, насколько это возможно, с SiPM или APD. Таким образом, элементы мозаики могут быть плотно упакованы при поддержании согласованного размера пикселя и периодичности в мозаике. Хотя здесь показана мозаика в виде прямоугольной решетки, элементы мозаики могут быть смещены, например смещены строки или столбцы.

Поскольку кластеризацию энергии (например, детектирование и агрегирование множества событий сцинтилляции из одного гамма-фотона) выполняют на уровне модуля, стробирование энергии выполняют также на уровне модуля. В зависимости от размера пациента или субъекта это способствует уменьшению скорости передачи данных, которые должны быть обработаны последующими электронными средствами в соотношении 5 к 10. Данные, выводимые модулем, предоставляют полную информацию для характеризации события, включая в себя идентичность кристалла взаимодействия (например, идентичность или координаты одного или больше кристаллов, в которых было детектировано событие сцинтилляции), энергию и информацию о временной метке. Поэтому выход всех отдельных ADM может быть вставлен в одну схему детектирования совпадения (например, для PET) или может непосредственно использоваться для реконструкции (например, для SPECT).

В одном варианте осуществления отдельные светоприемники 64 (и их ассоциированные сектора массива 66 кристаллов модуля) могут быть заменены индивидуально в пределах ADM 14. Например, разъем 68 может обеспечивать как электрическое соединение с модулем 60 обработки через PCB 62, так и механическое соединение с PCB для того, чтобы сделать светоприемник 64 съемным для замены, в случае неисправности светоприемника 64. Кроме того, или в качестве альтернативы, каждый ADM 14 съемно соединен с его детектором 13 (фиг. 1) таким образом, что конкретный ADM может быть удален и заменен для обеспечения функциональности всех ADM в массиве ADM на детекторе.

В другом варианте осуществления ADM c другими размерами используют в данном детекторе для того, чтобы способствовать формированию поверхности детектора с изменяемой конфигурацией и/или чувствительностью.

В другом варианте осуществления результаты считывания из отдельных модулей предоставляют в электронное средство детектирования совпадения (не показано). Модули обработки соседних ADM могут использовать ближайший соседний тип протокола передачи данных для определения, какой из модулей обработки обрабатывает данные комптоновского типа, когда модули достаточно малы (например, массив кристаллов 8×8 или с некоторым другим относительно малым размером массива), так что комптоновские события могут быть детектированы в двух или больше соседних модулях.

В еще одном варианте осуществления каждый модуль 60 обработки включает в себя флэш-память (не показана) с одной или больше таблицами коррекции, сохраненными в ней для обработки данных события сцинтилляции. Таблицы коррекции способствуют учету комптоновского рассеяния и т.п.

На фиг. 3 показан график 80, который представляет зависимость детектированных одиночных событий от размера массива модуля. На графике показан процент детектированных событий сцинтилляции на пиксель, отмеченный как функция области считывания пикселя для массива сцинтилляционных кристаллов LYSO с пикселем размером 4×4 мм2 с шагом 4,1 мм. Для меньших модулей комптоновское рассеяние в соседние модули приводит к потере чувствительности детектирования одиночного события. Для размера массива модуля 16×16 кристаллов только 3% всех одиночных событий теряется в результате комптоновского рассеяния в соседние модули, что составляет соответствующий размер модуля приблизительно 7×7 см2.

Поскольку в ADM выполняют стробирование энергии, желательно обеспечить, чтобы комптоновское рассеяние в соседние модули не приводило к потере чувствительности системы. График 80 моделирования системы представляет, что для размеров модуля 16×16 кристаллов (например, каждый из которых имеет размер 4×4 мм2) теряются только приблизительно 3% всех одиночных событий из-за комптоновского рассеяния в соседние модули. Это иллюстрирует, что размер модуля 7×7 см2 представляет соответствующий размер модуля.

В общем, размер модуля представляет собой функцию плотности материала сцинтилляции. Например, при использовании материала сцинтилляции LYSO или LSO может использоваться массив кристаллов 16×16. При использовании материала сцинтилляции LaBr может использоваться массив кристаллов 24×24. В другом примере используется массив кристаллов 8×8, когда используется материал сцинтилляции BGO. Следует понимать, что описанные выше примеры размера массива кристаллов являются иллюстративными по своей природе и предназначены для иллюстрации того, что по мере увеличения плотности сцинтилляции выбранный размер модуля может быть уменьшен.

На фиг. 4 иллюстрируется возможная архитектура 100 системы PET, которой способствует использование ADM, в соответствии с одним или больше аспектами, описанными здесь. Схема 28 детектирования совпадения принимает данные одиночного события после стробирования энергии из множества детекторных модулей 14. Поскольку стробирование энергии выполняют на уровне модуля, частоту данных, вводимых в схему детектирования совпадения, уменьшают в соотношении 5 к 10 (в зависимости от размера пациента) по сравнению с классической архитектурой. Как только детектирование совпадения будет выполнено, данные пар событий сцинтилляции после стробирования энергии предоставляют в процессор 32 реконструкции, который реконструирует анатомическое изображение для отображения для пользователя.

На фиг. 5 представлен способ выполнения установки временной метки времени события сцинтилляции и стробирования энергии на уровне детекторного модуля, вместо последующей обработки детектированных событий сцинтилляции для уменьшения требований к последующей обработке данных в соответствии с одним или больше аспектами, описанными здесь. На этапе 90 события сцинтилляции детектируют в ADM 14. На этапе 92 для информации о событии сцинтилляции устанавливают временную метку на уровне модуля, например, с помощью схемы установки временной метки, включенной в модуль процессора в ADM. На этапе 94 события сцинтилляции подвергают стробированию по энергии на уровне модуля (например, с помощью ADM, в котором детектируют события сцинтилляции). На этапе 96 информацию о событии сцинтилляции с установленной временной меткой и после стробирования энергии выводят для обработки и/или реконструкции. С помощью информации о событии сцинтилляции с временной меткой и после стробирования энергии в ADM такие действия обработки удаляют из рабочего потока последующей обработки, что, таким образом, повышает скорость реконструкции. На этапе 98 информацию о событии сцинтилляции с временной меткой и после стробирования энергии реконструируют в объеме 3D изображения.

В одном варианте осуществления способ дополнительно включает в себя этап, на котором выполняют алгоритм детектирования совпадения для выходной информации о событии сцинтилляции, для идентификации соответствующих пар событий сцинтилляции перед реконструкцией объема 3D изображения.

В другом варианте осуществления способ включает в себя этапы, на которых определяют, что ADM является неисправным (например, при детектировании отсутствия сигнала из него, или любым другим соответствующим способом), и передают сигнал неисправности, который предупреждает техника об одном или больше неисправных ADM. Техник может затем заменять неисправный ADM новым, предварительно откалиброванным ADM.

Описанные системы и способы можно применять для детекторов PET и SPECT. Полностью масштабируемая архитектура обеспечивает возможность упрощенной конструкции системы и способствует свободе в выборе конфигурации при конструировании сканера. Это, в свою очередь, приводит к существенному снижению скорости передачи данных, которые должны быть обработаны последующими электронными средствами. В частности, для применений с большой величиной подсчета описанные системы и способы уменьшают потребность в использовании электронных средств широкополосной обработки.

Кроме того, описанные способы могут быть сохранены на машиночитаемом носителе информации как исполняемые компьютером инструкции, которые исполняются с помощью процессора или процессоров.

Изобретение было описано со ссылкой на несколько вариантов осуществления. Модификации и изменения могут возникнуть у других лиц после прочтения и понимания предыдущего подробного описания изобретения. Предполагается, что изобретение следует рассматривать как включающее в себя все такие модификации и изменения, если они находятся в пределах объема приложенной формулы изобретения или ее эквивалентов.


АВТОНОМНЫЙ ДЕТЕКТОРНЫЙ МОДУЛЬ КАК СТРОИТЕЛЬНЫЙ БЛОК ДЛЯ МАСШТАБИРУЕМЫХ СИСТЕМ PET И SPECT
АВТОНОМНЫЙ ДЕТЕКТОРНЫЙ МОДУЛЬ КАК СТРОИТЕЛЬНЫЙ БЛОК ДЛЯ МАСШТАБИРУЕМЫХ СИСТЕМ PET И SPECT
АВТОНОМНЫЙ ДЕТЕКТОРНЫЙ МОДУЛЬ КАК СТРОИТЕЛЬНЫЙ БЛОК ДЛЯ МАСШТАБИРУЕМЫХ СИСТЕМ PET И SPECT
АВТОНОМНЫЙ ДЕТЕКТОРНЫЙ МОДУЛЬ КАК СТРОИТЕЛЬНЫЙ БЛОК ДЛЯ МАСШТАБИРУЕМЫХ СИСТЕМ PET И SPECT
АВТОНОМНЫЙ ДЕТЕКТОРНЫЙ МОДУЛЬ КАК СТРОИТЕЛЬНЫЙ БЛОК ДЛЯ МАСШТАБИРУЕМЫХ СИСТЕМ PET И SPECT
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
10.06.2014
№216.012.ce52

Усовершенствованная температурная компенсация и схема управления для однофотонных счетчиков

Изобретение относится к области диагностической визуализации. Сущность изобретения заключается в том, что модуль детектора излучения для использования в визуализации содержит множество детекторных пикселов, причем каждый детекторный пиксел включает в себя сцинтиллятор (35), оптически связанный...
Тип: Изобретение
Номер охранного документа: 0002518589
Дата охранного документа: 10.06.2014
10.03.2015
№216.013.2f2c

Рет-детекторная система с улучшенными характеристиками количественной оценки

Группа изобретений относится к медицинской технике, а именно к системам и способам ядерной медицинской визуализации. Система ядерной медицинской визуализации, в которой применяются модули детектора излучения с пикселизированными сцинтилляционными кристаллами, включает в себя детектор рассеяния,...
Тип: Изобретение
Номер охранного документа: 0002543544
Дата охранного документа: 10.03.2015
10.05.2015
№216.013.4a82

Способ улучшения временного разрешения цифровых кремниевых фотоумножителей

Изобретение относится к области детекторов. Модуль (10) детектора излучения для использования во времяпролетном позитронно-эмиссионном (TOF-PET) томографическом сканере (8) формирует триггер-сигнал, указывающий обнаруженное событие излучения. Схема синхронизации (22), включающая в себя первый...
Тип: Изобретение
Номер охранного документа: 0002550581
Дата охранного документа: 10.05.2015
12.01.2017
№217.015.635b

Матрица детекторов с аналого-цифровым преобразованием времени, имеющая повышенную временную точность

Изобретение относится к области регистрации излучения. Способ детектирования излучения содержит этапы, на которых регистрируют событие; генерируют инициирующий сигнал, ассоциированный с регистрацией события; генерируют первую метку (TS1) времени для инициирующего сигнала с использованием...
Тип: Изобретение
Номер охранного документа: 0002589468
Дата охранного документа: 10.07.2016
Показаны записи 1-10 из 1 330.
10.01.2013
№216.012.1713

Устройство и способ для получения напитка

Изобретение относится к области приготовления напитков. Устройство для получения напитка, например молока, посредством смешивания порошкообразной смеси с жидкостью, предпочтительно с водой, содержит средство приготовления концентрата напитка, содержащее узел смешивания для смешивания количества...
Тип: Изобретение
Номер охранного документа: 0002471399
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1714

Подставка для поддержания чашки и кофе-машина или подобное ей устройство, содержащее упомянутую подставку

Изобретение относится к области бытовой техники. Машина для приготовления напитков содержит, по меньшей мере, разливающий наконечник и подставку для емкости, принимающей напиток, такой как чашка или тому подобное, расположенную над поддоном, размещенным под упомянутым, по меньшей мере, одним...
Тип: Изобретение
Номер охранного документа: 0002471400
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19ae

Освещающее устройство

Изобретение относится к освещающему устройству для освещения поверхности. Заявленное освещающее устройство для освещения поверхности содержит, по меньшей мере, один осветительный элемент и освещающее тело, в котором осветительный элемент испускает искусственный свет. Элемент корпуса содержит...
Тип: Изобретение
Номер охранного документа: 0002472066
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a1f

Цифровая обработка импульсов в схемах счета мультиспектральных фотонов

Изобретение относится к детекторам мультиспектрального счета фотонов. Сущность изобретения заключается в том, что аппарат включает в себя идентификатор (408) локального минимума, который идентифицирует локальный минимум между перекрывающимися импульсами в сигнале, причем импульсы имеют...
Тип: Изобретение
Номер охранного документа: 0002472179
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a20

Уменьшение эффектов захвата в сцинтилляторе за счет применения вторичного излучения

Изобретение относится к области техники детекторов излучения и, в частности, к детектору излучения, который содержит сцинтиллятор. Согласно одному из вариантов осуществления настоящего изобретения устройство (10) детектора излучения для регистрирования первичного излучения (6) содержит...
Тип: Изобретение
Номер охранного документа: 0002472180
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a3a

Пространственная мышь - устройство связи

Изобретение относится к области устройств, используемых людьми для управления машинами, и, в частности, к пассивным устройствам связи. Техническим результатом является обеспечение определения ориентации устройства и повышения точности определения ориентации устройства, используя изображение...
Тип: Изобретение
Номер охранного документа: 0002472206
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a6b

Органическое светоизлучающее устройство с регулируемой инжекцией носителей заряда

Настоящее изобретение относится к органическим светоизлучающим устройствам (OLED) и дисплеям, содержащим такие OLED, которые могут функционировать аналогично транзистору, и к способам приведения в действие таких OLED и дисплеев, при этом органическое светоизлучающее устройство содержит по...
Тип: Изобретение
Номер охранного документа: 0002472255
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1b08

Способ определения, по меньшей мере, одного приемлемого параметра для процесса приготовления напитка

Изобретение относится к области приготовления напитков. Установка для приготовления напитков, реализующая заявленный способ, предназначена для выполнения процесса приготовления напитка посредством пропускания текучей среды, по меньшей мере, через один элемент, содержащий, по меньшей мере, один...
Тип: Изобретение
Номер охранного документа: 0002472414
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1b0c

Устройство для перфорирования порционных капсул

Изобретение относится к области автоматических машин для приготовления напитков. Устройство для перфорирования капсулы, содержащей растворимый или настаиваемый продукт в машине для приготовления напитков, содержит корпус с первой поверхностью, снабженной, по меньшей мере, одним острым выступом...
Тип: Изобретение
Номер охранного документа: 0002472418
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1cdb

Светоизлучающий ворсовый ковер

Изобретение предлагает светоизлучающий ворсовый ковер (1). Технический результат заключается в увеличении надежности и прочности электрических проводников в светоизлучающем ворсовом ковре. Ковер (1) содержит первичный несущий слой (100), по выбору вторичный несущий слой (200), по выбору...
Тип: Изобретение
Номер охранного документа: 0002472881
Дата охранного документа: 20.01.2013
+ добавить свой РИД