×
20.12.2014
216.013.1344

Результат интеллектуальной деятельности: ПИРОМЕТРИЧЕСКИЙ ДАТЧИК КООРДИНАТ ОЧАГА ВОЗГОРАНИЯ С ПОЛЕВОЙ ДИАФРАГМОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации и взрывоподавления, и предназначено для обнаружения очага возгорания в газодисперсных средах по излучению источника повышенной температуры и определения двумерных координат очага возгорания по тепловому излучению. Техническим результатом изобретения является: обеспечение возможности регистрации излучения очагов возгорания, смещенных относительно оптической оси датчика; повышение вероятности правильного обнаружения очага возгорания; повышение быстродействия датчика и надежности определения координат очага возгорания; повышение чувствительности, надежности и помехозащищенности датчика, что позволяет повысить эффективность системы пожаротушения или взрывоподавления. Пирометрический датчик содержит последовательно установленные и оптически связанные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания и приемники излучения, дополнительно содержит полевую диафрагму с изменяемым законом распределения прозрачных и непрозрачных участков, установленную после разделителя светового потока в одном из оптических каналов, исполнительная схема дополнительно содержит блок управления диафрагмой, а в качестве приемников излучения использованы одноэлементные некоординатные приемники излучения. 1 ил.
Основные результаты: Пирометрический датчик координат очага возгорания, содержащий последовательно установленные и оптически связанные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания и приемники излучения, выходы приемников излучения соединены с входом исполнительной схемы, отличающийся тем, что дополнительно содержит изменяемую полевую диафрагму, установленную после разделителя светового потока в одном из оптических каналов и представляющую собой совокупность независимо управляемых оптических затворов, исполнительная схема дополнительно содержит блок управления диафрагмой с возможностью осуществления управления оптическими затворами полевой диафрагмы по произвольному алгоритму, а в качестве приемников излучения использованы одноэлементные некоординатные приемники излучения.

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации и взрывоподавления, и предназначено для обнаружения очага возгорания в газодисперсных средах по излучению источника повышенной температуры и определения двумерных координат очага возгорания по тепловому излучению. Пирометрический датчик в составе активной системы пожаротушения или взрывоподавления может использоваться во всех областях производства, опасных по пожарам и взрывам газодисперсной среды. К таким производствам относятся угледобывающее, мукомольное, деревообрабатывающее, лакокрасочное, металлургическое, нефтегазовое.

В связи с широким распространением потенциально опасных производств возникает необходимость в разработке датчиков, способных регистрировать очаг возгорания по его излучению на ранней стадии, который находится в любой зоне углового поля датчика.

Известны фотоэлектронные сканирующие системы, осуществляющие сканирование изображений в пространстве [1]. Объектив приемной оптической системы строит изображение всего поля обзора в плоскости чувствительного слоя приемника излучения фотоэлектронной сканирующей системы.

Недостатками указанных сканирующих систем являются невысокое быстродействие, связанное с продолжительным временем считывания электрического сигнала с координатного фотоэлектрического приемника излучения, а также влияние оптических характеристик среды на правильность определения яркости (температуры) объекта. Это делает невозможным использование подобных датчиков в системах взрывоподавления в газодисперсных средах.

Известен пирометрический датчик координат очага возгорания [2, прототип], в котором перечисленные недостатки устранены. Датчик содержит последовательно установленные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания, однокоординатные приемники излучения (ОПИ), расположенные перпендикулярно друг другу и оптической оси датчика, причем выходы приемников соединены с входом исполнительной схемы, но и у этого датчика недостатком является то, что изображение от точечного излучателя (например, возгорания на начальной стадии), смещенного относительно оптической оси датчика, не попадает (не проецируется) на один или оба ОПИ, что приводит к пропуску начального момента возгорания.

Известен пирометрический датчик координат очага возгорания с цилиндрическими линзами [3], построенный на основе ОПИ. Недостатком этого датчика является то, что в результате внесения в оптическую систему двух цилиндрических линз уровень поступающей на ОПИ энергии, при определении начальной стадии возгорания, сопоставим с собственными шумами приемника, что значительно снижает вероятность правильного обнаружения сигнала и может привести к пропуску факта возгорания или к обнаружению возгорания через неприемлемо длительный промежуток времени.

Кроме того, прототип и аналоги обладают рядом недостатков, обусловленных использованием в них многоэлементных ОПИ [1]. При этом использование многоэлементных ОПИ с полной электрической развязкой отдельных чувствительных элементов приводит к возникновению следующих недостатков датчика:

- низкая разрешающая способность, вызванная значительными габаритными размерами отдельных элементов ОПИ;

- снижение надежности датчика из-за большого количества независимых элементов ОПИ;

- необходимость введения поправочных коэффициентов для обеспечения идентичности параметров отдельных элементов ОПИ.

Использование многоэлементных ОПИ с внутренними электрическими связями приводит к возникновению следующих недостатков датчика:

- снижение достоверности работы датчика вследствие необходимости учета взаимовлияния и разброса параметров отдельных элементов ОПИ, наличия коммутационных переходных процессов и утечек по токоведущим шинам и подложкам, а также влияния специфических шумов ОПИ;

- снижение надежности датчика вследствие выхода из строя всего ОПИ в случае потери чувствительности одного из элементов ОПИ;

- ограничение на выбор алгоритма опроса ОПИ вследствие невозможности произвольной выборки сигнала с любого элемента.

Суть предлагаемого технического решения заключается во введении в пирометрический датчик координат очага возгорания полевой диафрагмы с измененяемым законом распределения прозрачных и непрозрачных участков, расположенной после разделителя светового потока в одном из оптических каналов. Полевая диафрагма представляет собой совокупность независимо управляемых устройств, обеспечивающих временное перекрытие и последующее пропускание светового потока в течение определенного промежутка времени - оптических затворов.

Предлагаемый пирометрический датчик координат очага возгорания с полевой диафрагмой представлен на схеме (фиг.1).

Устройство содержит оптическую систему 1, предназначенную для фокусировки светового потока на чувствительных окнах приемников излучения, разделитель светового потока 2, полевую диафрагму с изменяемым законом распределения прозрачных и непрозрачных участков 3, светофильтры 4 и 4' с разными спектрами пропускания, одноэлементные некоординатные приемники излучения 5, исполнительную схему 6, содержащую блок управления диафрагмой (БУД), блок вычислений (БВ) и блок формирования электроимпульсов (БФЭ).

Пирометрический датчик координат очага возгорания с полевой диафрагмой работает следующим образом.

Излучение контролируемой области собирается при помощи оптической системы 1 и разделяется разделителем светового потока 2 на два потока (оптических канала). Каждый из этих потоков фокусируется на одноэлементных некоординатных приемниках излучения, одновременно происходит выделение узкого спектра энергии светофильтрами 4 и 4' для обеспечения возможности определения температуры очага возгорания методом спектрального отношения. Определение координат очага возгорания осуществляется при помощи полевой диафрагмы 3, установленной в одном из оптических каналов, каждый оптический затвор которой, по определенному алгоритму, пропускает или перекрывает световой поток. Координаты источника излучения определяются по номеру оптического затвора полевой диафрагмы, при открытии которого сигнал на выходе приемника излучения достигает максимального значения.

Сигналы с некоординатных одноэлементных приемников излучения подаются в исполнительную схему 6 на блок вычислений (БВ), который преобразует их в цифровые значения, выполняет программную фильтрацию помех, вычисляет координаты очага возгорания, вычисляет отношение электрических сигналов с одноэлементных некоординатных приемников излучения и сравнивает полученное отношение с заранее заданным значением для принятия решения о возникновении (или отсутствии) возгорания. Блок управления диафрагмой (БУД) осуществляет управление оптическими затворами полевой диафрагмы в соответствии с алгоритмом, заданным блоком вычислений (БВ). В случае возникновения возгорания исполнительная схема 6 формирует управляющий сигнал на соответствующее взрывоподавляющее устройство при помощи блока формирования электроимпульсов (БФЭ).

Примером оптического затвора, удовлетворяющего требованию по быстродействию, является жидкокристаллический оптический затвор, построенный на основе двойной пи-ячейки. Период срабатывания двойной пи-ячейки (время открытия, время в открытом состоянии и время закрытия) составляет 0,25 мс [4]. Согласно техническим требованиям, предъявляемым к оптико-электронному датчику обнаружения очага возгорания на ранней стадии, время принятия решения датчиком о факте возникновения (отсутствия) возгорания не должно превышать 3 мс [5, 6]. Таким образом, время опроса полевой диафрагмы, составленной из девяти независимых оптических затворов, построенных на основе двойной пи-ячейки, удовлетворяет техническому требованию по быстродействию.

Введение полевой диафрагмы и блока управления диафрагмой обеспечивает избирательное пропускание излучения заданных участков контролируемого объекта (сканирование объекта). В результате сканирования:

- появляется возможность регистрации координат излучения очагов возгорания, смещенных относительно оптической оси датчика, некоординатными приемниками излучения, что повышает вероятность правильного обнаружения очага возгорания на ранней стадии и его местоположения;

- повышается быстродействие датчика и надежность определения координат очага возгорания за счет использования полевой диафрагмы, позволяющей осуществлять произвольную выборку сигнала.

Применение одноэлементных некоординатных приемников излучения обладает рядом неоспоримых преимуществ, а именно повышает чувствительность, надежность и помехозащищенность датчика.

Отсутствие влияния промежуточной среды (таких ее характеристик, как влажность и запыленность) и расстояния до очага возгорания на достоверность срабатывания датчика позволят использовать прибор в средах, характеризующихся сложными оптическими условиями.

Пирометрический датчик координат очага возгорания с полевой диафрагмой успешно прошел лабораторные испытания.

В настоящее время БТИ АлтГТУ активно сотрудничает с угольными шахтами Кемеровской области в области разработки и внедрения датчиков обнаружения очага возгорания.

Источники информации

1. Якушенков Ю.Г. Теория и расчет оптико-электронных приборов. [Текст] // Ю.Г. Якушенков. - 3-е изд. - М.: Машиностроение 1989. 360 с: ил.

2. Патент РФ №2318242.

3. Патент РФ №2459269.

4. Продукция НИИ «Фотон» [Электронный ресурс] / Режим доступа: http://lcd-foton.com/products/konstrukciya/.

5. Оптико-электронный прибор обнаружения начальной стадии развития взрыва в газодисперсных системах. Диссертация на соискание ученой степени кандидата технических наук. Сыпин Е.В. - Бийск: 2007. - 144 с.

6. Оптико-электронная система определения трехмерных координат очага взрыва в газодисперсных системах на начальной стадии. Диссертация на соискание ученой степени кандидата технических наук. Павлов А.Н. - Бийск: 2010. - 134 с.

Пирометрический датчик координат очага возгорания, содержащий последовательно установленные и оптически связанные оптическую систему, разделитель светового потока, светофильтры с разными спектрами пропускания и приемники излучения, выходы приемников излучения соединены с входом исполнительной схемы, отличающийся тем, что дополнительно содержит изменяемую полевую диафрагму, установленную после разделителя светового потока в одном из оптических каналов и представляющую собой совокупность независимо управляемых оптических затворов, исполнительная схема дополнительно содержит блок управления диафрагмой с возможностью осуществления управления оптическими затворами полевой диафрагмы по произвольному алгоритму, а в качестве приемников излучения использованы одноэлементные некоординатные приемники излучения.
ПИРОМЕТРИЧЕСКИЙ ДАТЧИК КООРДИНАТ ОЧАГА ВОЗГОРАНИЯ С ПОЛЕВОЙ ДИАФРАГМОЙ
Источник поступления информации: Роспатент

Показаны записи 41-43 из 43.
13.12.2018
№218.016.a5a9

Способ измерения оптических характеристик атмосферы

Изобретение относится к области метеорологии, а более конкретно к способам определения оптических характеристик атмосферы, и может использоваться, например, для определения оптических параметров аэрозольных частиц в атмосфере. Заявлен способ измерения оптических характеристик атмосферы,...
Тип: Изобретение
Номер охранного документа: 0002674560
Дата охранного документа: 11.12.2018
10.04.2019
№219.017.0708

Способ гидротермической обработки проса

Изобретение относится к мукомольно-крупяной промышленности. Способ предусматривает увлажнение зерна или ядра проса водой при наборе вакуума с остаточным давлением 0,05-0,07 МПа и подаче воды в зерно или ядро в течение 10-60 с. Затем осуществляют отволаживание зерна или ядра в течение 6-8 ч....
Тип: Изобретение
Номер охранного документа: 0002453369
Дата охранного документа: 20.06.2012
19.04.2019
№219.017.33c1

Аэровинтовой циклон-сепаратор

Изобретение относится к области разделения аэродисперсных продуктов на фракции по совокупности физико-механических свойств с одновременной очисткой воздуха. Аэровинтовой циклон-сепаратор содержит входной тангенциальный патрубок (1), конусообразный корпус (2), соосно расположенную в корпусе...
Тип: Изобретение
Номер охранного документа: 0002442662
Дата охранного документа: 20.02.2012
Показаны записи 61-63 из 63.
21.07.2020
№220.018.3526

Система для испытаний прочности при изгибе ледяных консольных балок на плаву

Изобретение относится к оборудованию и измерительной технике и может быть применено для определения характеристик прочности консольных балок при изгибе воздействием вниз, изготовленных в естественном ледяном покрове. Система содержит нагрузочный рычаг, динамометр, датчик перемещения и...
Тип: Изобретение
Номер охранного документа: 0002727064
Дата охранного документа: 17.07.2020
20.05.2023
№223.018.6638

Стенд для имитации низкочастотных горизонтальных колебаний льда

Изобретение относится к стендам для имитации низкочастотных горизонтальных колебаний льда. Стенд располагает рабочей платформой, установленной на обрезиненные катки, а нижняя поверхность платформы и поверхность основания стенда покрываются полированным стеклом. Низкочастотные колебания рабочей...
Тип: Изобретение
Номер охранного документа: 0002773439
Дата охранного документа: 03.06.2022
20.05.2023
№223.018.6639

Стенд для имитации низкочастотных горизонтальных колебаний льда

Изобретение относится к стендам для имитации низкочастотных горизонтальных колебаний льда. Стенд располагает рабочей платформой, установленной на обрезиненные катки, а нижняя поверхность платформы и поверхность основания стенда покрываются полированным стеклом. Низкочастотные колебания рабочей...
Тип: Изобретение
Номер охранного документа: 0002773439
Дата охранного документа: 03.06.2022
+ добавить свой РИД