×
20.12.2014
216.013.109e

Результат интеллектуальной деятельности: СПОСОБ РЕГИОСЕЛЕКТИВНОГО СИНТЕЗА МОНОГАЛОГЕНПРОИЗВОДНЫХ 1,2-,1,7-,1,12-ДИКАРБА-КЛОЗО-ДОДЕКАБОРАНОВ(12) С ИСПОЛЬЗОВАНИЕМ КОМПЛЕКСНОЙ АКТИВАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды, 1,3-дигалоген-5,5-диметилгидантоины, тригалоген-изоциануровые кислоты, N-галогенарил-сульфонамиды и их натриевые соли, N-галогенфталимиды, где галоген = Cl, Br, I; арил = фенил, п-толил, в среде кислотного органического растворителя. В качестве растворителя применяют одноосновные жидкие органические кислоты алифатического ряда R-COOH, где R=H, CH, CF, n=1-3. При этом процесс проводят с использованием ультразвуковой активации в присутствии катализатора, в качестве которого используют сильные кислоты: серную (HSO), метансульфоновую (CHSOOH) и трифторометансульфоновую (CFSOOH) в количестве 0,1-1,0 мол.%. Процесс ведут при температуре 20-50°C в течение 2-4 часов. Изобретение позволяет снизить энергозатраты. 15 пр.
Основные результаты: Способ получения моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12), включающий взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды, 1,3-дигалоген-5,5-диметилгидантоины, тригалоген-изоциануровые кислоты, N-галогенарил-сульфонамиды и их натриевые соли, N-галогенфталимиды, где галоген = Cl, Br, I; арил = фенил, п-толил, в среде кислотного органического растворителя, в качестве которого применяют одноосновные жидкие органические кислоты алифатического ряда R-COOH, где R=H, CH, CF, n=1-3, с последующим выделением конечного продукта, отличающийся тем, что процесс проводят с использованием ультразвуковой активации в присутствии катализатора, в качестве которого используют сильные кислоты: серную (HSO), метансульфоновую (CHSOOH) и трифторометансульфоновую (CFSOOH) в количестве 0,1-1,0 мол.%, при этом процесс ведут при температуре 20-50°C в течение 2-4 часов, при этом способ позволяет получать орто-, мета- и пара-изомеры 9(9,2)-галоген-карборанов.

Изобретение относится к технологии получения борорганических соединений, в частности моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12) (о-, м-, п-карборанов, соответственно), а именно 9-хлор-, 9-бром-, 9-иод-о(м)-карборанов и 2-хлор-, 2-бром-, 2-иод-п-карборанов, которые могут быть использованы в качестве структурных единиц для синтеза супрамолекулярных систем. 9-Галоген-о(м)- и 2-галоген-п-карбораны являются исходными соединениями для дальнейшего синтеза 9(9,2)-фтор-, 9(9,2)-алкил- и 9(9,2)-арил-о(м,п)-карборанов - перспективных структур для молекулярной электроники. Кроме того, иодпроизводные карборанов находят применение как рентгеноконтрастные вещества и субстраты в борнейтронозахватной терапии.

В известных способах получения 9(9,2)-галоген-о(м,п)-карборанов электрофильным галогенированием замену атома водорода на атом галогена осуществляют взаимодействием о-, м- и п-карборанов с элементарным галогеном (в качестве иодирующих агентов также используют межгалогенные соединения ICl и IBr) в среде тетрахлорида углерода (CCl4), трихлорметана (CHCl3), метиленхлорида (CH2Cl2) или дисульфида углерода (CS2) в присутствии кислот Льюиса: AlCl3, AlBr3, FeCl3. Синтез проводят при температуре кипения растворителя. (Schroeder H., Heying T.L., Reiner J.R. Inorg. Chem., 1963, v.2, No.6. P.1092. Захаркин Л.И., Охлобыстин О.Ю., Семин Г.К., Бабушкина Т.А. Изв. АН СССР, сер. хим., 1965, №10. С.1913. Захаркин Л.И., Калинин В.Н. ДАН СССР, 1966, т.169, №3. С.590. Захаркин Л.И., Калинин В.Н. Ж. общ. хим., 1966, т.36. С.2218. Станко В.И., Климова А.И., Климова Т.П. Ж. общ. хим., 1967, т.37. С.2236. Станко В.И., Братцев В.А., Вострикова В.А., Данилова Г.Н. Ж. общ. хим., 1968, т.38. С.1348. Станко В.И., Гольтяпин Ю.В. Ж. общ. хим., 1969, т.39. С.711. Sieckhaus J.F., Semenuk N.S., Knowles T.A., Schroeder H. Inorg. Chem., 1969, v.8, No.11. P.2452. Станко В.И., Гольтяпин Ю.В. Ж. общ. хим., 1970, т.40. С.127. Jiang W., Knobler C.B., Curtis C.E., Mortimer, M.D., Hawthorne M.F. Inorg. Chem., 1995, v.34, No.13. P.3491. Пат. США US 5489673, МПК C07H 23/00, C07H 5/06, A61K 49/04, 1996).

К недостаткам данных способов можно отнести следующее:

- обработка о-, м- и п-карборанов галогенами в условиях электрофильного галогенирования приводит не только к моногалогенпроизводным, но также и к ди-, три-, тетра- и поли-В-галогенкарборанам, что требует тщательного и трудоемкого разделения конечных продуктов реакции;

- сравнительно низкий выход целевых продуктов, а именно 9(9,2)-галоген-о(м,п)-карборанов;

- использование галогенсодержащих кислот Льюиса, не идентичных по внедряемому в карборановое ядро галогену, приводит к образованию смешанных галогенпроизводных о-, м- и п-карборанов, что еще более затрудняет разделение реакционной смеси на индивидуальные компоненты;

- использование элементарных галогенов представляет опасность как для окружающей среды, так и для персонала;

- галогенсодержащие растворители являются озоноразрушающими средствами.

Известны способы получения галогенпроизводных карборанов фотохимическим (радикальным) галогенированием о-, м- и п-карборанов элементарными галогенами в среде галогенсодержащих органических растворителей под воздействием УФ-облучения. (Захаркин Л.И., Калинин В.Н. Ж. общ. хим., 1966, т.36. С.362. Захаркин Л.И., Калинин В.Н. ДАН СССР, 1967, т.173. С.1091. Sieckhaus J.F., Semenuk N.S., Knowles T.A., Schroeder H. Inorg. Chem. 1969, v.8, No.11. P.2452. Станко В.И., Климова Т.В., Белецкая И.П. ДАН СССР, 1977, т.234. С.1347. Захаркин Л.И., Ольшевская В.А. Изв. АН СССР, сер. хим., 1987. С.1608. Авт. свид. СССР №1657506, МПК C07F 5/02, C08K 5/55, 1991).

К недостаткам данных способов относится следующее:

- сравнительно низкий выход целевых продуктов;

- получение смеси моно-, ди- и полигалоген-о(м,п)-карборанов;

- использование элементарных галогенов представляет опасность как для окружающей среды, так и для персонала;

- применение УФ-облучения без надлежащей защиты представляет опасность для персонала;

- галогенсодержащие растворители являются озоноразрушающими средствами.

Также известен способ получения нидо-9,11-Х2-7,8-C2B9H10--анионов (X=Cl, Br, I) с применением галогенсукцинимидов (Santos B.C., Pinkerton A.B., Kinkead S.A., Hurlburt P.K., Jasper S.A., Sellers C.W., Huffman J.C., Todd L.J. Polyhedron, 2000, v.19, P.1777). Реакцию галогенирования нидо-7,8-C2B9H12--аниона галогенсукцинимидами осуществляют в таких растворителях, как ацетонитрил, тетрагидрофуран, бензол, хлористый метилен, диметилформамид или диметилсульфоксид как при комнатной температуре, так и при температуре кипения растворителя.

Однако данным способом синтезируют исключительно дигалогенпроизводные аниона додекагидродикарба-нидо-ундекабората (в виде алкиламмониевых солей), а не моногалогенпроизводные о(м,п)-карборанов. Кроме того, указанная реакция сопровождается образованием ряда побочных продуктов.

Наиболее близким по технической сущности и принятым нами в качестве прототипа является способ получения 9-галоген-о-карборанов (Пат. РФ RU 2454422, C07F 5/02, 2011), заключающийся в галогенировании о-карборана N-галогенимидами(амидами), в числе которых: 1,3-дигалоген-5,5-диметилгидантоины, тригалоген-изоциануровые кислоты, N-галоген-арилсульфонамиды и их натриевые соли, N-галогенфталимиды, где галоген=Cl, Br, I; арил=фенил, п-толил, в среде кислотного органического растворителя, в качестве которого применяют одноосновные жидкие органические кислоты алифатического ряда R-COOH, где R=H, CnH2n+1, CnF2n+1, n=1-3. Однако этим способом получают только моногалогенпроизводные о-карборана. Кроме того, поскольку реакцию проводят при температуре кипения кислотного органического растворителя, температура процесса достаточно высокая от 100 до 140°C в зависимости от типа кислоты.

Задача данного изобретения заключается в создании простого региоселективного, эффективного экологически чистого («зеленая химия»), пожаро- и взрывобезопасного способа получения 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12) - [9(9,2)-галоген-о(м,п)-карборанов] с высоким выходом целевых продуктов при снижении энергозатрат.

Поставленная задача достигается тем, что предложен способ получения 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12) [9(9,2)-галоген-о(м,п)-карборанов], включающий взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды, 1,3-дигалоген-5,5-диметилгидантоины, тригалоген-изоциануровые кислоты, N-галогенарил-сульфонамиды и их натриевые соли, N-галогенфталимиды, где галоген=Cl, Br, I; арил=фенил, п-толил, в среде кислотного органического растворителя, в качестве которого применяют одноосновные жидкие органические кислоты алифатического ряда R-COOH, где R=H, CnH2n+1, CnF2n+1, n=1-3, с последующим выделением конечного продукта, отличающийся тем, что процесс проводят с использованием ультразвуковой активации (35 кГц, 120 Вт) в присутствии катализатора, в качестве которого используют сильные кислоты: серную (H2SO4), метансульфоновую (CH3SO2OH) и трифторометансульфоновую (CF3SO2OH) в количестве 0,1-1,0 мол.%, при этом процесс ведут при температуре 20-50°C в течение 2-4 часов, при этом способ позволяет получать орто-, мета- и пара-изомеры 9(9,2)-галоген-карборанов.

Достигнутый технический результат состоит в создании универсального способа для синтеза орто-, мета- и пара- изомеров 9(9,2)-галоген-карборанов. За счет совместного использования катализатора и ультразвуковой активации уменьшается продолжительность, а следовательно, увеличивается производительность процесса; по сравнению с прототипом выход 9-галогенпроизводных орто-карборанов увеличивается от 1 до 17%, снижаются энергозатраты вследствие более низкой температуры проведения процесса, которая обеспечивается исключительно ультразвуковым воздействием без дополнительного обогрева. При этом предложенный способ сохраняет достоинства способа-прототипа, а именно, реакция не экзотермична, проводится на воздухе (без использования инертной атмосферы), исключается стадия абсолютирования растворителей, экологически безопасна (не используются галогенированные растворители), процесс пожаро- и взрывобезопасен.

Выходы конечных продуктов составляют 70-90% от теории на очищенный (перекристаллизованный из н-гептана) продукт, причем образуются исключительно моногалогенпроизводные о(м,п)-карборанов в соответствии с уравнениями реакций:

где X=Cl, Br, I.

где X=Cl, Br.

где Х=Cl, Br.

где Х=Cl, Br; R′=Н, СН3.

где X - Cl, Br, I.

везде R=H, CnH2n+1, CnF2n+1, n=1-3;

))) - ультразвуковая активация;

Кт - катализатор.

Синтез 9(9,2)-галогенпроизводных о(м,п)-карборанов реакцией галогенирования проводят в воздушной атмосфере в круглодонной колбе, снабженной термометром, обратным холодильником и погруженной в УЗ-ванну, заполненную рабочей жидкостью - дистиллированной водой.

Перемешивание реакционной массы и ее нагревание от 20°C до 50°C осуществляется за счет воздействия ультразвуковых волн (35 кГц, 120 Вт). В колбу загружают расчетное количество о(м,п)-карборана, галогенирующего агента и кислотного органического растворителя. Реакционную массу облучают ультразвуком при комнатной температуре в течение 5-10 минут, затем добавляют катализатор в виде 0,1 молярного раствора в соответствующем кислотном органическом растворителе и продолжают облучение ультразвуком. Нагревание реакционной массы от 20 до 50°C, индуцируемое УЗ-активацией, протекает в течение 2 часов. Общая продолжительность процесса составляет от 2 часов для монобромпроизводного о-карборана и до 4 часов для монохлорпроизводного п-карборана. После охлаждения до температуры окружающей среды реакционную массу обрабатывают дистиллированной водой, в результате чего целевой продукт выпадает в осадок, который фильтруют, дважды промывают дистиллированной водой, отжимают и сушат в вакууме (10-30 мм рт.ст.) при 70-80°C. Затем продукт перекристаллизовывают из кипящего н-гептана (т. кип. 97-99°C). Образующиеся в процессе реакции имиды и амиды остаются в водно-кислотном растворе.

Ниже приведены примеры осуществления предлагаемого способа.

Пример 1. Получение 9-бром-о-карборана

В трехгорлую круглодонную колбу (0,25 л), снабженную термометром и обратным холодильником, загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 10,0 г (55,0 ммоль) N-бромсукцинимида и 100 мл 99%-ной уксусной кислоты. Включают УЗ-ванну и реакционную массу облучают при комнатной температуре в течение 10 мин. Затем добавляют 0,5 ммоль серной кислоты в виде 0,1 молярного раствора в уксусной кислоте (5 мл). После чего реакционную массу облучают ультразвуком при температуре 20-50°C в течение 2 часов. По окончании УЗ-активации реакционную массу охлаждают до комнатной температуры, прибавляют 300 мл дистиллированной воды. Образовавшийся осадок фильтруют на фильтре Шотта, промывают 2×200 мл дистиллированной воды, отжимают и сушат в вакууме (30 мм рт.ст.) при 70°C. Затем целевой продукт перекристаллизовывают из кипящего н-гептана (т. кип. 97-99°C). Общий выход 75% от теории. Тпл 205-208°C.

Пример 2. Получение 9-иод-о-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 13,0 г (55,0 ммоль) N-иодсукцинимида (95%-ной чистоты) и 100 мл 99%-ной уксусной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,05 ммоль серной кислоты в виде 0,1 молярного раствора в уксусной кислоте (0,5 мл). Продолжительность реакции 2 часа. Общий выход 85% от теории. Тпл 119-121°C.

Пример 3. Получение 9-хлор-о-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 4,4 г (18,4 ммоль) трихлор-N-изоциануровой кислоты (97%-ной чистоты) и 100 мл 99%-ной уксусной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,5 ммоль серной кислоты в виде 0,1 молярного раствора в уксусной кислоте (5 мл). Продолжительность реакции 2 часа. Общий выход 89% от теории.

Тпл 228-232°C.

Пример 4. Получение 9-хлор-о-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 5,53 г (27,5 ммоль) 1,3-дихлор-5,5-диметилгидантоина (98%-ной чистоты) и 100 мл 99%-ной пропионовой кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 5 мин. Затем добавляют 0,5 ммоль метансульфоновой кислоты в виде 0,1 молярного раствора в пропионовой кислоте (5 мл). Продолжительность реакции 3 часа. Общий выход 87% от теории. Тпл 228-232°C.

Пример 5. Получение 9-бром-о-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 8,02 г (27,5 ммоль) 1,3-дибром-5,5-диметилгидантоина (98%-ной чистоты) и 100 мл 99%-ной пропионовой кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 5 мин. Затем добавляют 0,25 ммоль метансульфоновой кислоты в виде 0,1 молярного раствора в пропионовой кислоте (2,5 мл). Продолжительность реакции 2 часа. Общий выход 85% от теории. Тпл 205-208°C.

Пример 6. Получение 9-хлор-о-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 15,81 г (55,0 ммоль) хлорамина Т тригидрата 98%-ной чистоты (натриевая соль N-хлор-п-толуолсульфонамида тригидрат) и 100 мл 97%-ной муравьиной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 5 мин. Затем добавляют 0,5 ммоль метансульфоновой кислоты в виде 0,1 молярного раствора в муравьиной кислоте (5 мл). Продолжительность реакции 3 часа. Общий выход 71% от теории. Тпл 228-232°C.

Пример 7. Получение 9-иод-о-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) о-карборана (с учетом 99% чистоты), 13,0 г (55,0 ммоль) N-иодсукцинимида (95%-ной чистоты) и 100 мл 99%-ной трифторуксусной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,05 ммоль метансульфоновой кислоты в виде 0,1 молярного раствора в трифторуксусной кислоте (0,5 мл), Продолжительность реакции 2 часа. Общий выход 86% от теории. Тпл 119-121°C.

Пример 8. Получение 9-иод-м-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) м-карборана (с учетом 99% чистоты), 13,0 г (55,0 ммоль) N-иодсукцинимида (95%-ной чистоты) и 100 мл 99%-ной уксусной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,05 ммоль трифторметансульфоновой кислоты в виде 0,1 молярного раствора в уксусной кислоте (0,5 мл). Продолжительность реакции 3 часа. Общий выход 75% от теории.

Пример 9. Получение 9-хлор-м-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) м-карборана (с учетом 99% чистоты), 4,4 г (18,4 ммоль) трихлор-N-изоциануровой кислоты (97%-ной чистоты) и 100 мл 99%-ной уксусной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,25 ммоль трифторметансульфоновой кислоты в виде 0,1 молярного раствора в уксусной кислоте (2,5 мл). Продолжительность реакции 3 часа. Общий выход 78% от теории.

Пример 10. Получение 9-бром-м-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) м-карборана (с учетом 99% чистоты), 8,02 г (27,5 ммоль) 1,3-дибром-5,5-диметилгидантоина (98%-ной чистоты) и 100 мл 99%-ной пропионовой кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 5 мин. Затем добавляют 0,25 ммоль метансульфоновой кислоты в виде 0,1 молярного раствора в пропионовой кислоте (2,5 мл). Продолжительность реакции 3 часа. Общий выход 73% от теории.

Пример 11. Получение 2-бром-п-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) п-карборана (с учетом 99% чистоты), 8,02 г (27,5 ммоль) 1,3-дибром-5,5-диметилгидантоина (98%-ной чистоты) и 100 мл 99%-ной пропионовой кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 5 мин. Затем добавляют 0,25 ммоль трифторметансульфоновой кислоты в виде 0,1 молярного раствора в пропионовой кислоте (2,5 мл), Продолжительность реакции 4 часа. Общий выход 72% от теории.

Пример 12. Получение 2-хлор-п-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) п-карборана (с учетом 99% чистоты), 4,4 г (18,4 ммоль) трихлор-N-изоциануровой кислоты (97%-ной чистоты) и 100 мл 99%-ной пропионовой кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,25 ммоль трифторметансульфоновой кислоты в виде 0,1 молярного раствора в пропионовой кислоте (2,5 мл). Продолжительность реакции 4 часа. Общий выход 78% от теории.

Пример 13. Получение 2-хлор-п-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) п-карборана (с учетом 99% чистоты), 7,5 г (55,0 ммоль) N-хлорсукцинимида (98%-ной чистоты) и 100 мл 99%-ной трифторуксусной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,5 ммоль метансульфоновой кислоты в виде 0,1 молярного раствора в трифторуксусной кислоте (5 мл). Продолжительность реакции 4 часа. Общий выход 77% от теории.

Пример 14. Получение 2-иод-п-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) п-карборана (с учетом 99% чистоты), 13,0 г (55,0 ммоль) N-иодсукцинимида (95%-ной чистоты) и 100 мл 97%-ной муравьиной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,05 ммоль трифторметансульфоновой кислоты в виде 0,1 молярного раствора в муравьиной кислоте (0,5 мл). Продолжительность реакции 3 часа. Общий выход 76% от теории.

Пример 15. Получение 2-бром-п-карборана

Галогенирование осуществляют аналогично примеру 1.

Загружают 7,3 г (50,0 ммоль) п-карборана (с учетом 99% чистоты), 9,88 г (55,0 ммоль) N-бромсукцинимида (99%-ной чистоты) и 100 мл 99%-ной изомасляной кислоты. Реакционную массу перемешивают ультразвуком при комнатной температуре в течение 10 мин. Затем добавляют 0,5 ммоль серной кислоты в виде 0,1 молярного раствора в изомасляной кислоте (5 мл). Продолжительность реакции 4 часа. Общий выход 73% от теории.

Для подтверждения идентичности полученных 9(9,2)-галоген-о(м,п)-карборанов использовался метод спектроскопии ЯМР на ядрах 1H, 11B, 13C.

Способ получения моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12), включающий взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды, 1,3-дигалоген-5,5-диметилгидантоины, тригалоген-изоциануровые кислоты, N-галогенарил-сульфонамиды и их натриевые соли, N-галогенфталимиды, где галоген = Cl, Br, I; арил = фенил, п-толил, в среде кислотного органического растворителя, в качестве которого применяют одноосновные жидкие органические кислоты алифатического ряда R-COOH, где R=H, CH, CF, n=1-3, с последующим выделением конечного продукта, отличающийся тем, что процесс проводят с использованием ультразвуковой активации в присутствии катализатора, в качестве которого используют сильные кислоты: серную (HSO), метансульфоновую (CHSOOH) и трифторометансульфоновую (CFSOOH) в количестве 0,1-1,0 мол.%, при этом процесс ведут при температуре 20-50°C в течение 2-4 часов, при этом способ позволяет получать орто-, мета- и пара-изомеры 9(9,2)-галоген-карборанов.
Источник поступления информации: Роспатент

Показаны записи 51-58 из 58.
25.08.2017
№217.015.9da1

Способ получения декаборана

Изобретение относится к химической промышленности и может быть использовано в синтезе и производстве незамещенных и замещенных карборанов общей формулы RCBHCR. Сначала нагревают раствор диглима и боргидрида натрия до 105°С, прикапывая алкилгалогенид. После добавления всего алкилгалогенида...
Тип: Изобретение
Номер охранного документа: 0002610773
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.b97d

Способ получения органомагнийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органомагнийоксаналюмоксанов. Способ включает взаимодействие полиалкоксиалюмоксанов с ацетилацетонатом магния [CH(O)CCH=C(CH)O]Mg в среде органического растворителя при температуре 20°С-70°С с последующей отгонкой растворителя сначала при атмосферном...
Тип: Изобретение
Номер охранного документа: 0002615147
Дата охранного документа: 04.04.2017
26.08.2017
№217.015.da33

Способ получения поликарбонатных формовок с двухслойным покрытием

Изобретение относится к получению формовок из поликарбоната с защитным покрытием, которые могут быть использованы в приборостроении, на автотранспорте, в осветительной технике, в строительстве и др., для производства абразиво- и атмосферостойких изделий широкого ассортимента, в том числе...
Тип: Изобретение
Номер охранного документа: 0002623783
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dd93

Способ получения олигоборсилазанов

Изобретение относится к области химической технологии азотсодержащих соединений кремния. Предложен способ получения олигоборсилазанов взаимодействием олигосилазанов, содержащих N-H и Si-H группы, в качестве которых используют кремнийорганические соединения класса силазанов, не содержащие при...
Тип: Изобретение
Номер охранного документа: 0002624442
Дата охранного документа: 04.07.2017
20.01.2018
№218.016.0fe1

Способ получения 3,3'-дихлор-4,4'-диаминодифенилметана

Изобретение относится к улучшенному способу получения 3,3'-дихлор-4,4'-диаминодифенилметана. Получаемое соединение может быть использовано для вулканизации и отверждения высокотемпературных эпоксидных композиций при изготовлении высокопрочных термостойких конструкционных изделий из полимерных...
Тип: Изобретение
Номер охранного документа: 0002633525
Дата охранного документа: 13.10.2017
17.02.2018
№218.016.2b6a

Способ получения метил(фенил) силоксановых олигомеров с концевыми трифенилсилильными группами

Изобретение относится к технологии получения линейных бис(трифенилсилил)олигометилфенилсилоксанов. Предложен способ получения метил(фенил)силоксановых олигомеров с концевыми трифенилсилильными группами общей формулы PhSiO[Si(Me)(Ph)O]SiPh, где N≥4, заключающийся во взаимодействии...
Тип: Изобретение
Номер охранного документа: 0002643367
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2c39

Способ получения солей бис(дикарболлид) кобальта

Изобретение относится к способу получения солей бис(дикарболлид) кобальта и триалкиламмонийных или тетраалкиламмонийных солей бис(дикарболлид) кобальта. Способ включает взаимодействие нидо-7,8(7,9)-дикарбаундекаборатов щелочных металлов или нидо-7,8(7,9)-дикарбаундекаборатов триалкиламмония или...
Тип: Изобретение
Номер охранного документа: 0002643368
Дата охранного документа: 01.02.2018
04.04.2018
№218.016.30b7

Способ получения органомагнийоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органомагнийоксаниттрийоксаналюмоксанов общей формулы где k, р=0,1-6, m=3-12; k/m+l+x+2y+z=3; s+t+2r=3; R - CH, n=2-4; R* - C(CH)=CHC(O)OCH; R** - C(CH)=CHC(O)CH. Способ включает взаимодействие полиалкоксиалюмоксанов с гидратом ацетилацетоната иттрия...
Тип: Изобретение
Номер охранного документа: 0002644950
Дата охранного документа: 15.02.2018
Показаны записи 61-70 из 121.
03.10.2018
№218.016.8ce5

Способ получения органометаллоксаниттрийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органометаллоксаниттрийоксаналюмоксанов общей формулы: , где k, р=0,1-6, m=3-12; а=2,3; k/m+1+х+2у+z=3; s+1+2r=3; M=Zr, Hf, Cr; R - CH, n=2-4; R* - C(CH)=CHC(O)OCH; R** - C(CH)=CHC(O)CH. Способ заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002668226
Дата охранного документа: 27.09.2018
30.11.2018
№218.016.a1f4

Смазочное масло на основе жидких олигометилоктилсилоксанов и олигоэтилоктилсилоксанов

Предлагаемое изобретение относится к жидким смазочным составам на кремнийорганической основе, в частности к смесевым смазочным маслам на олигометилоктил- или олигоэтилоктилсилоксановой основе в сочетании с нефтяным маслом и/или сложным органическим эфиром, которые находят применение в различных...
Тип: Изобретение
Номер охранного документа: 0002673482
Дата охранного документа: 27.11.2018
21.12.2018
№218.016.aa31

Способ нанесения окислительностойких и ультравысокотемпературных покрытий из диборидов титана, циркония и гафния на композиционные материалы

Изобретение относится к технологии создания ультравысокотемпературо- и окислительностойких углерод-углеродных волокнистых композиционных материалов, применяемых в конструкциях при создании деталей летательных аппаратов, эксплуатируемых в экстремальных условиях. Предложен способ нанесения...
Тип: Изобретение
Номер охранного документа: 0002675618
Дата охранного документа: 20.12.2018
08.02.2019
№219.016.b820

Способ получения металлополикарбосиланов

Изобретение относится к способам получения металлополикарбосиланов (ММПКС). Предложен способ получения металлополикарбосиланов взаимодействием в среде органического растворителя поликарбосилана-сырца (ПКС-сырец, Т=60-100°С) с алкиламидными соединениями циркония и тантала или гафния и тантала...
Тип: Изобретение
Номер охранного документа: 0002679145
Дата охранного документа: 06.02.2019
20.02.2019
№219.016.bf84

Способ обезвоживания кремнийорганических жидкостей и устройство для его осуществления

Изобретение относится к обезвоживанию кремнийорганических жидкостей, например гидролизата диметилдихлорсилана (ДМДХС), и может быть использовано в кремнийорганических производствах для выделения воды и водных растворов хлористого водорода из кремнийорганических жидкостей. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002350373
Дата охранного документа: 27.03.2009
20.02.2019
№219.016.c17e

Способ создания контактного рисунка из никеля на пластинах кремния

Изобретение относится к области изготовления полупроводниковых приборов из кремния, в частности к изготовлению фотопреобразователей. Способ создания контактного рисунка из никеля на пластинах кремния включает создание диэлектрической пленки с окнами, химическое осаждение никеля в окна...
Тип: Изобретение
Номер охранного документа: 0002411612
Дата охранного документа: 10.02.2011
20.02.2019
№219.016.c200

Устройство для нейтрализации кремнийорганических жидкостей

Изобретение относится к конструкциям аппаратов для проведения химических реакций и тепломассообменных процессов в газожидкостных смесях, а также в системах, склонных к образованию твердых осадков, в частности, в процессе нейтрализации олигоорганосилоксановых жидкостей с содержанием до 0,5...
Тип: Изобретение
Номер охранного документа: 0002428247
Дата охранного документа: 10.09.2011
20.02.2019
№219.016.c2b3

Способ получения иттрийсодержащих органоалюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения иттрийсодержащих органоалюмоксанов общей формулы [(R**O)Y(OH)O]·[Al(OR)(OR*)(OH)O], где k, m=3-12; s+t+2r=3; 1+x+2y+z=3; R-CH, n=2-4; R*-С(СН)=СНС(O)СН, С(СН)=СНС(O)OCH; R**-С(СН)=СНС(O)СН. Способ включает взаимодействие алюминийорганического соединения...
Тип: Изобретение
Номер охранного документа: 0002451687
Дата охранного документа: 27.05.2012
23.02.2019
№219.016.c615

Способ получения кристаллического литийалюминийгидрида в среде н-дибутилового эфира

Изобретение может быть использовано в химической промышленности. Кристаллический литийалюминийгидрид получают взаимодействием гидрида лития с раствором хлорида алюминия в н-дибутиловом эфире в отсутствие затравки при температуре минус 18°С - минус 12°С. Полученный раствор перемешивают и...
Тип: Изобретение
Номер охранного документа: 0002680491
Дата охранного документа: 21.02.2019
01.03.2019
№219.016.cc16

Способ получения фенил- или метилфенилхлорсиланов, схема теплового обеспечения и реактор для его осуществления

Изобретение относится к промышленным способам производства фенилтрихлорсилана и метилфенилдихлорсилана, используемых в синтезе кремнийорганических полимерных материалов для производства силиконовых лаков, смол и эластомеров. Техническая задача - разработка технологичного способа и его...
Тип: Изобретение
Номер охранного документа: 0002385869
Дата охранного документа: 10.04.2010
+ добавить свой РИД