×
10.12.2014
216.013.0e28

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ охлаждают для конденсации элементарной серы и подают в последовательно расположенный слой адсорбента (А-1), (А-2). Температуру адсорбента на входе поддерживают равной 130-150°С, а на выходе равной 100-120°С. Изобретение позволяет обеспечить непрерывную очистку от сероводорода газовых потоков с переменным расходом и составом. 4 з.п. ф-лы, 8 пр., 8 табл., 2 ил.

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов.

Изобретение может найти применение при очистке попутных нефтяных газов, образующихся при добыче и переработке сернистых нефтей, при очистке коксовых и сланцевых газов, а также выбросов химических производств.

В настоящее время для очистки газов от сернистых соединений находит применение метод прямого гетерогенно-каталитического окисления сероводорода кислородом до элементарной серы. При использовании этого метода достигается высокая степень очистки исходных газов при достаточно низких энергозатратах.

Известен способ очистки газов от сернистых соединений (РФ 2144495, С01В 17/04, B01D 53/48, 20.01.2000), согласно которому газы очищают от сернистых соединений путем их окисления кислородом до серы и/или дисульфидов в слое оксидного катализатора с последующим отделением серы от очищенного газа. Катализатор содержит 5-100 мас.% активного компонента и представляет собой монолитный блок, собранный из отдельных пористых элементов со сквозными каналами, причем не менее 50% пор, содержащихся в названных элементах, имеют размер от 1000 до 5000 Ǻ, а объем пор составляет 0,15-0,50 см3/г.

Наиболее близким по технической сущности к заявляемому способу является способ получения элементарной серы из сероводорода (РФ 1627507, С01В 17/04, 15.02.91), основанный на гетерогенно-каталитическом окислении сероводорода, которое проводят в две стадии. На 1-й стадии окисление ведут в псевдоожиженном слое катализатора при 250-300°C, на 2-й стадии - в реакторе со стационарным слоем катализатора при 140-155°C. Отношение кислорода к сероводороду на 1-й стадии составляет 0,5. Способ позволяет очищать газы, содержащие до 50 об.% сероводорода, общая степень конверсии сероводорода в серу достигает 99,99% при жестком соблюдении заданного соотношения кислорода к сероводороду на первой стадии.

Эффективность процесса прямого окисления сероводорода существенно зависит от стабильности параметров исходной газовой смеси (концентрация сероводородов и меркаптанов, расход), что приводит к тому, что разработанные методы прямого окисления сероводорода не позволяют добиться стабильного остаточного содержания сернистых соединений, общая концентрация которых в очищенном газе не должна превышать 20 ppm., что является регламентируемым требованием.

В связи с этим необходима разработка комбинированных технологий, включающих стадии прямого окисления с последующей доочисткой до санитарных норм, что подразумевает разработку многофункциональных адсорбентов, способных эффективно поглощать сернистые соединения различных классов.

Задача, решаемая изобретением, - обеспечение непрерывной очистки от сероводорода газовых потоков с переменным расходом и составом, экологическая надежность и безопасность способа.

Для решения поставленной задачи предложен способ очистки от сероводорода газовых потоков с переменным расходом и составом, включающий окисление сероводорода и меркаптанов кислородом в присутствии катализатора с получением элементарной серы и диоксида серы, газ после стадии прямого окисления охлаждают для конденсации элементарной серы и подают в последовательно расположенный слой многофункционального адсорбента.

Температуру адсорбента на входе поддерживают равной 130-150°C, а на выходе - равной 100-120°C.

В качестве адсорбента используют материал, который содержит железомарганцевые конкреции и имеет следующий состав в пересчете на оксиды, мас.%: Fe2O3 20,0-35,0; MnO2 20,0-35,0; SiO2 10,0-25,0; ZnO 5-10, Al2O3 5,0-10,0; Na2O 2,0-5,0; K2O 1,5-5,0; MgO 1,5-3,0; CaO 1,5-3,0; P2O5 3,0-10,0.

Адсорбент может дополнительно содержать связующее. В качестве связующего он может содержать неорганические соединения, такие как гидроксид алюминия, оксид магния или оксид кальция, в количестве 15-25, преимущественно, 20 мас.%, в пересчете на безводное вещество, а также неорганические кислоты в количестве 3-5 мас.%, в пересчете на безводное вещество. В качестве связующего он может также содержать органические высокомолекулярные соединения в количестве 4-5 мас.%, в пересчете на безводное вещество.

Концептуально процесс очистки газовых потоков от сернистых соединений описывается следующим образом Фиг.1.

В реакторе Р-1 при взаимодействии сернистых соединений очищаемого газа с кислородом воздуха происходит парциальное окисление сероводорода до элементарной серы (1) и глубокое окисление легких меркаптанов с образованием диоксида серы (2).

В связи с тем, что показатели реакции 1 (селективность в отношении образования серы) достаточно чувствительны к соотношению сероводород/кислород, а параметры исходной газовой смеси (концентрация сероводородов и меркаптанов, расход) и как правило, нестабильны, достаточно сложно с точки зрения аппаратурного оформления обеспечить четкое стехиометрическое соотношение кислород/сероводород.

Таким образом, если кислород находится в избытке - образуется SO2, а при недостатке O2 происходит проскок сероводорода. Вследствие этого адсорбент, загруженный в аппараты А-1 и А-2, должен обладать мультифункциональными свойствами и обеспечивать высокую адсорбционную емкость как в отношении сероводорода, так и диоксида серы.

Предполагается расмотреть два варианта регенерациии насыщенных адсорбентов:

А) Регенерация путем воздействия водяного пара. В этом случае преимущественным продуктом является сероводород, поток которого подмешивают к основному потоку очищаемого газа.

Б) Окислительная регенерация, когда асорбент подвергают воздействию кислорода воздуха при температуре 500-600°С. В этом случае образуется диоксид серы, который направляют на восстановительную утилизацию с получением элементарной серы.

Для иллюстрации заявляемого способа приводим примеры его осуществления.

Исследования процесса окисления сероводорода проводят на лабораторной установке, схема которой приведена на Фиг.1.

Особенностью лабораторной установки является возможность проведения реакции прямого окисления сероводорода как в неподвижном, так и в псевдоожиженном слое гранул катализатора, что позволяет добиться высокой изотермичности слоя катализатора (поддержания заданной температуры процесса) при концентрациях сероводорода в исходной газовой смеси вплоть до 100%.

На Фиг.1 представлена блок-схема комбинированной установки с адсорбером и узлом прямого окисления.

На Фиг.2 представлена схема лабораторной установки, где: 1 - реактор с возможностью псевдоожижения слоя катализатора, 2 - печь с кипящим слоем кварцевого песка, 3 - ловушка для жидкой серы, 4 - адсорбер.

Пример 1.

В лабораторный реактор прямого окисления подают газ, моделирующий реальный состав попутного нефтяного или природного газа при давлении 0,5 ати и воздух. Суммарный расход газовой смеси составляет 3,6 дм3/ч.

В реактор загружают 1 г катализатора прямого окисления. В реакторе прямого окисления при оптимальных условиях, установленных при выполнении экспериментов по прямому окислению сернистых соединений, происходит окисление сероводорода до элементарной серы, а меркаптана до диоксида серы. Парогазовая смесь поступает в охлаждаемую ловушку, где ее температура понижается до 150°С, сера конденсируется, а газовый поток поступает в адсорбер, куда загружено 5 г адсорбента состава, мас.%: Fe2O3 20,0; MnO2 20,0; SiO2 - 25,0; ZnO - 6, Al2O3 10,0; Na2O 5,0; K2O 5,0; MgO 3,0; CaO 3,0; P2O5 8,0.

Температуру в адсорбере поддерживают в начале по ходу газа 130-150°С, в конце 100-120°С.

Для регулирования давления в системе на входе из адсорбера установлен клапан. Газовую смесь после ловушки и адсорбера подают для анализа в хроматограф «Кристалл 2000 М».

Результаты экспериментов приведены в таблице 1.

Таблица 1
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (80 ppm) <5 ppm
RSH 100ppm (0,01%) - -
СО2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 97 ppm (0,0097%) <5 ppm

Пример 2.

Аналогичен примеру 1, отличается избыточным давлением, которое составляет 4 ати.

Результаты приведены в таблице 2.

Таблица 2
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 4 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (40 ppm) <5 ppm
RSH 100 ppm (0,01%) - -
CO2 1.1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <5 ppm

Пример 3.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий хвостовые газы процесса Клауса или вентиляционные выбросы. Результаты экспериментов приведены в таблице 3.

Таблица 3
Результаты исследования комбинированного процесса очистки смесей, моделирующих хвостовые газы процесса Клауса или вентиляционные выбросы (давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 0,8 <0,01 (90ррm) <5 ppm
RSH 100ppm(0,01%) - -
CO2 5,0 5.0 5.0
O2 0,41 0,01 0,0
N2 остальное Остальное остальное
SO2 -0,1 0,07% <5 ppm

Пример 4.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий коксовый газ.

Результаты экспериментов приведены в таблице 4.

Таблица 4
Результаты исследования комбинированного процесса очистки смесей, моделирующих коксовый газ (давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 0,16 <0,005 (50 ppm) <5 ppm
Н2 57 57 57
CO2 2,2 2,2 2,2
O2 0,4 0,3 0,3
N2 остальное остальное остальное
СН4 24 24 24
СО 8,0 8,0 8,0
SO2 - 120ppm (0,12% об.) <7ppm

Пример 5.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий кислый газ, образующийся при аминовой очистке сероводородсодержащих потоков.

Результаты экспериментов приведены в таблице 5.

Таблица 5
Результаты исследования комбинированного процесса очистки смесей, моделирующих кислые газы образующихся при аминовой очистке сероводородсодержащих потоков (давление изб. - 0,4 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора Точка отбора пробы №1 После адсорбера
Точка отбора пробы №2 10 ч непрерывной работы
H2S 15 50 ppm <5 ppm
CO2 60 58,85 58,85
O2 8 0,00 0,00
N2 остальное остальное остальное
СН4 1 1,28 24
SO2 - 1,28 <10 ppm

Пример 6.

Аналогичен примеру 1, отличается тем, что в реактор подают газ, моделирующий сланцевый газ

Результаты экспериментов приведены в таблице 6.

Таблица 6
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь сланцевый газ, давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (40ppm) <5 ppm
CO2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <8 ppm

Пример 7.

Аналогичен примеру 1, отличается составом адсорбента

Используют адсорбент следующего состава, мас.%: Fe2O3 35,0; MnO2 35,0; SiO2 10,0; ZnO 5, Al2O3 5,0; Na2O 2,0; K2O 2,0; MgO 1,5; CaO 1,5; P2O5 3,0. Результаты экспериментов приведены в таблице 7.

Таблица 7
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 0,5 ати).
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (80 ppm) <4 ppm
RSH 100 ppm (0,01%) - -
CO2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <5 ppm

Пример 8.

Аналогичен примеру 1, отличается составом адсорбента. Используют адсорбент следующего состава, мас.%: Fe2O3 25,0; MnO2 25,0; SiO2 15,0; ZnO 9,5, Al2O3 7,5; Na2O 3,5; K2O 3,0; MgO 2,5; CaO 2,0; P2O5 7,0.

Результаты экспериментов приведены в таблице 8.

Таблица 8
Результаты исследования комбинированного процесса очистки углеводородных смесей (модельная смесь попутный нефтяной газ, природный газ, давление изб. - 0,5 ати)
Компоненты газовой смеси, % об. Состав газа (сухой газ)
До реактора
исх. смесь
После реактора
Точка отбора пробы №1
После адсорбера
Точка отбора пробы №2 100 ч непрерывной работы
H2S 1,0 <0,01 (80ppm) <8 ppm
RSH 100 ppm (0,01%) - -
CO2 1,1 1,2 1,2
O2 0,52 0,02 0,02
N2 10,1 10,3 10,3
СН4 80,2 80,9 80,9
С25 7,1 7,25 7,25
SO2 - 100 ppm (0,01%) <5 ppm

Как видно из представленных данных разработанный комбинированный способ позволяет очистить модельные газы различного состава до требуемых регламентируемых норм.


СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 114.
10.09.2014
№216.012.f137

Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления

Изобретение относится к катализаторам, используемым в процессах каталитической переработки тяжелого нефтяного сырья. Данный катализатор содержит активный компонент, выбираемый из соединений никеля, кобальта, молибдена, вольфрама или любой их комбинации, который нанесен на неорганический...
Тип: Изобретение
Номер охранного документа: 0002527573
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f8a7

Способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата

Изобретение относится к способу получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата, сущность которого заключается в последовательном осаждении в водной среде продуктов сульфирования фталоцианина кобальта или его хлорзамещенных...
Тип: Изобретение
Номер охранного документа: 0002529492
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f8d2

Способ получения углеродминерального сорбента

Изобретение относится к области получения углеродминеральных сорбционных материалов. Способ включает нанесение углеродсодержащих соединений на поверхность оксида алюминия с мезо-, макропористой структурой, сушку и пиролиз в токе инертного газа с образованием на поверхности оксида алюминия слоя...
Тип: Изобретение
Номер охранного документа: 0002529535
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa95

Катализатор и способ получения этилена и пропилена

Изобретение относится к области химической технологии, а именно к производству этилена или пропилена путем окислительного дегидрирования этана или пропана в присутствии катализатора. Описан катализатор получения этилена или пропилена, содержащий оксихлорид рутения RuOCl, нанесенный на носитель,...
Тип: Изобретение
Номер охранного документа: 0002529995
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fa9a

Способ переработки тяжелого нефтяного сырья

Изобретение относится к способу переработки тяжелого нефтяного сырья, в том числе мазутов, путем гидропереработки в присутствии катализатора при повышенной температуре в диапазоне от 300 до 600°C, времени контакта с катализатором 0,5-2 г-сырья/г-кат/ч, в присутствии водорода, подаваемого под...
Тип: Изобретение
Номер охранного документа: 0002530000
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fad7

Адгезионный состав и способ обработки металлоармирующих материалов

Изобретение относится к адгезионному составу для обработки поверхности металлоармирующих материалов, используемых для армирования эластомерных резиновых композиций, а также к способу обработки поверхности таких материалов. Указанный способ включает обработку поверхности металлоармирующего...
Тип: Изобретение
Номер охранного документа: 0002530061
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0905

Способ получения метана из атмосферного диоксида углерода

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана,...
Тип: Изобретение
Номер охранного документа: 0002533710
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0dfb

Способ приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде. При этом термообработку...
Тип: Изобретение
Номер охранного документа: 0002534996
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
Показаны записи 21-30 из 124.
27.09.2014
№216.012.f8a7

Способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата

Изобретение относится к способу получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата, сущность которого заключается в последовательном осаждении в водной среде продуктов сульфирования фталоцианина кобальта или его хлорзамещенных...
Тип: Изобретение
Номер охранного документа: 0002529492
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f8d2

Способ получения углеродминерального сорбента

Изобретение относится к области получения углеродминеральных сорбционных материалов. Способ включает нанесение углеродсодержащих соединений на поверхность оксида алюминия с мезо-, макропористой структурой, сушку и пиролиз в токе инертного газа с образованием на поверхности оксида алюминия слоя...
Тип: Изобретение
Номер охранного документа: 0002529535
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa95

Катализатор и способ получения этилена и пропилена

Изобретение относится к области химической технологии, а именно к производству этилена или пропилена путем окислительного дегидрирования этана или пропана в присутствии катализатора. Описан катализатор получения этилена или пропилена, содержащий оксихлорид рутения RuOCl, нанесенный на носитель,...
Тип: Изобретение
Номер охранного документа: 0002529995
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fa9a

Способ переработки тяжелого нефтяного сырья

Изобретение относится к способу переработки тяжелого нефтяного сырья, в том числе мазутов, путем гидропереработки в присутствии катализатора при повышенной температуре в диапазоне от 300 до 600°C, времени контакта с катализатором 0,5-2 г-сырья/г-кат/ч, в присутствии водорода, подаваемого под...
Тип: Изобретение
Номер охранного документа: 0002530000
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fad7

Адгезионный состав и способ обработки металлоармирующих материалов

Изобретение относится к адгезионному составу для обработки поверхности металлоармирующих материалов, используемых для армирования эластомерных резиновых композиций, а также к способу обработки поверхности таких материалов. Указанный способ включает обработку поверхности металлоармирующего...
Тип: Изобретение
Номер охранного документа: 0002530061
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0905

Способ получения метана из атмосферного диоксида углерода

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана,...
Тип: Изобретение
Номер охранного документа: 0002533710
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0dfb

Способ приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде. При этом термообработку...
Тип: Изобретение
Номер охранного документа: 0002534996
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
+ добавить свой РИД